From triangulated categories to cluster algebras II

Philippe Caldero[1]; Bernhard Keller

  • [1] Université Claude Bernard Lyon I, Département de mathématiques, 69622 Villeurbanne Cedex (France)

Annales scientifiques de l'École Normale Supérieure (2006)

  • Volume: 39, Issue: 6, page 983-1009
  • ISSN: 0012-9593

How to cite

top

Caldero, Philippe, and Keller, Bernhard. "From triangulated categories to cluster algebras II." Annales scientifiques de l'École Normale Supérieure 39.6 (2006): 983-1009. <http://eudml.org/doc/82705>.

@article{Caldero2006,
affiliation = {Université Claude Bernard Lyon I, Département de mathématiques, 69622 Villeurbanne Cedex (France)},
author = {Caldero, Philippe, Keller, Bernhard},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {6},
pages = {983-1009},
publisher = {Elsevier},
title = {From triangulated categories to cluster algebras II},
url = {http://eudml.org/doc/82705},
volume = {39},
year = {2006},
}

TY - JOUR
AU - Caldero, Philippe
AU - Keller, Bernhard
TI - From triangulated categories to cluster algebras II
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 6
SP - 983
EP - 1009
LA - eng
UR - http://eudml.org/doc/82705
ER -

References

top
  1. [1] Bondal A.I., Kapranov M.M., Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat.53 (6) (1989) 1183-1205, 1337. Zbl0703.14011MR1039961
  2. [2] Brenner S., Butler M.C.R., The equivalence of certain functors occurring in the representation theory of Artin algebras and species, J. LMS14 (1) (1976) 183-187. Zbl0351.16011MR442031
  3. [3] Buan A.B., Marsh R.J., Reiten I., Cluster tilted algebras, Trans. Amer. Math. Soc.359 (2007) 323-332. Zbl1123.16009MR2247893
  4. [4] Buan A.B., Marsh R.J., Reiten I., Cluster mutation via quiver representations, Comment. Math. Helv., submitted for publication, math.RT/0412077. Zbl1193.16016
  5. [5] Buan A.B., Marsh R.J., Reiten I., Todorov G., Clusters and seeds in acyclic cluster algebras. Appendix by A.B. Buan, R.J. Marsh, P. Caldero, B. Keller, I. Reiten, and G. Todorov, Proc. Amer. Math. Soc., submitted for publication, math.RT/0510359. Zbl1190.16022
  6. [6] Buan A.B., Marsh R.J., Reineke M., Reiten I., Todorov G., Tilting theory and cluster combinatorics, Adv. Math., submitted for publication, math.RT/0402054. Zbl1127.16011MR2249625
  7. [7] Caldero P., Chapoton F., Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv.81 (2006) 595-616, math.RT/0410184. Zbl1119.16013MR2250855
  8. [8] Caldero P., Chapoton F., Schiffler R., Quivers with relations arising from clusters ( A n case), Trans. Amer. Math. Soc.358 (2006) 1347-1364. Zbl1137.16020MR2187656
  9. [9] Caldero P., Chapoton F., Schiffler R., Quivers with relations and cluster tilted algebras, J. Alg. and Rep. Th., submitted for publication, math.RT/0411238. Zbl1127.16013MR2250652
  10. [10] Caldero P., Keller B., From triangulated categories to cluster algebras, Invent. Math., submitted for publication, math.RT/0506018. Zbl1141.18012
  11. [11] Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc.15 (2) (2002) 497-529. Zbl1021.16017MR1887642
  12. [12] Fomin S., Zelevinsky A., Cluster algebras. II. Finite type classification, Invent. Math.154 (1) (2003) 63-121. Zbl1054.17024MR2004457
  13. [13] Fomin S., Zelevinsky A., Cluster algebras: Notes for the CDM-03 conference, math.RT/0311493. Zbl1119.05108
  14. [14] Geiss C., Leclerc B., Schröer J., Rigid modules over preprojective algebras, math.RT/0503324. Zbl1167.16009
  15. [15] Happel D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. Zbl0635.16017MR935124
  16. [16] Happel D., Rickard J., Schofield A., Piecewise hereditary algebras, London Math. Soc.20 (1988) 23-28. Zbl0638.16018MR916069
  17. [17] Hubery A., Acyclic cluster algebras via Ringel–Hall algebras, Preprint available at the author's homepage. Zbl1253.16014
  18. [18] Keller B., Triangulated orbit categories, Doc. Math.10 (2005) 551-581. Zbl1086.18006MR2184464
  19. [19] Keller B., Reiten I., Cluster tilted algebras are Gorenstein and stably Calabi–Yau, math.RT/0512471. Zbl1128.18007
  20. [20] Sherman P., Zelevinsky A., Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J.4 (4) (2004) 947-974, 982. Zbl1103.16018MR2124174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.