From triangulated categories to cluster algebras II
Philippe Caldero[1]; Bernhard Keller
- [1] Université Claude Bernard Lyon I, Département de mathématiques, 69622 Villeurbanne Cedex (France)
Annales scientifiques de l'École Normale Supérieure (2006)
- Volume: 39, Issue: 6, page 983-1009
- ISSN: 0012-9593
Access Full Article
topHow to cite
topCaldero, Philippe, and Keller, Bernhard. "From triangulated categories to cluster algebras II." Annales scientifiques de l'École Normale Supérieure 39.6 (2006): 983-1009. <http://eudml.org/doc/82705>.
@article{Caldero2006,
affiliation = {Université Claude Bernard Lyon I, Département de mathématiques, 69622 Villeurbanne Cedex (France)},
author = {Caldero, Philippe, Keller, Bernhard},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {6},
pages = {983-1009},
publisher = {Elsevier},
title = {From triangulated categories to cluster algebras II},
url = {http://eudml.org/doc/82705},
volume = {39},
year = {2006},
}
TY - JOUR
AU - Caldero, Philippe
AU - Keller, Bernhard
TI - From triangulated categories to cluster algebras II
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2006
PB - Elsevier
VL - 39
IS - 6
SP - 983
EP - 1009
LA - eng
UR - http://eudml.org/doc/82705
ER -
References
top- [1] Bondal A.I., Kapranov M.M., Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat.53 (6) (1989) 1183-1205, 1337. Zbl0703.14011MR1039961
- [2] Brenner S., Butler M.C.R., The equivalence of certain functors occurring in the representation theory of Artin algebras and species, J. LMS14 (1) (1976) 183-187. Zbl0351.16011MR442031
- [3] Buan A.B., Marsh R.J., Reiten I., Cluster tilted algebras, Trans. Amer. Math. Soc.359 (2007) 323-332. Zbl1123.16009MR2247893
- [4] Buan A.B., Marsh R.J., Reiten I., Cluster mutation via quiver representations, Comment. Math. Helv., submitted for publication, math.RT/0412077. Zbl1193.16016
- [5] Buan A.B., Marsh R.J., Reiten I., Todorov G., Clusters and seeds in acyclic cluster algebras. Appendix by A.B. Buan, R.J. Marsh, P. Caldero, B. Keller, I. Reiten, and G. Todorov, Proc. Amer. Math. Soc., submitted for publication, math.RT/0510359. Zbl1190.16022
- [6] Buan A.B., Marsh R.J., Reineke M., Reiten I., Todorov G., Tilting theory and cluster combinatorics, Adv. Math., submitted for publication, math.RT/0402054. Zbl1127.16011MR2249625
- [7] Caldero P., Chapoton F., Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv.81 (2006) 595-616, math.RT/0410184. Zbl1119.16013MR2250855
- [8] Caldero P., Chapoton F., Schiffler R., Quivers with relations arising from clusters ( case), Trans. Amer. Math. Soc.358 (2006) 1347-1364. Zbl1137.16020MR2187656
- [9] Caldero P., Chapoton F., Schiffler R., Quivers with relations and cluster tilted algebras, J. Alg. and Rep. Th., submitted for publication, math.RT/0411238. Zbl1127.16013MR2250652
- [10] Caldero P., Keller B., From triangulated categories to cluster algebras, Invent. Math., submitted for publication, math.RT/0506018. Zbl1141.18012
- [11] Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc.15 (2) (2002) 497-529. Zbl1021.16017MR1887642
- [12] Fomin S., Zelevinsky A., Cluster algebras. II. Finite type classification, Invent. Math.154 (1) (2003) 63-121. Zbl1054.17024MR2004457
- [13] Fomin S., Zelevinsky A., Cluster algebras: Notes for the CDM-03 conference, math.RT/0311493. Zbl1119.05108
- [14] Geiss C., Leclerc B., Schröer J., Rigid modules over preprojective algebras, math.RT/0503324. Zbl1167.16009
- [15] Happel D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. Zbl0635.16017MR935124
- [16] Happel D., Rickard J., Schofield A., Piecewise hereditary algebras, London Math. Soc.20 (1988) 23-28. Zbl0638.16018MR916069
- [17] Hubery A., Acyclic cluster algebras via Ringel–Hall algebras, Preprint available at the author's homepage. Zbl1253.16014
- [18] Keller B., Triangulated orbit categories, Doc. Math.10 (2005) 551-581. Zbl1086.18006MR2184464
- [19] Keller B., Reiten I., Cluster tilted algebras are Gorenstein and stably Calabi–Yau, math.RT/0512471. Zbl1128.18007
- [20] Sherman P., Zelevinsky A., Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J.4 (4) (2004) 947-974, 982. Zbl1103.16018MR2124174
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.