Cluster categories for algebras of global dimension 2 and quivers with potential
Claire Amiot[1]
- [1] Université Paris 7 Institut de Mathématiques de Jussieu Théorie des groupes et des représentations Case 7012 2 Place Jussieu 75251 Paris Cedex 05 (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 6, page 2525-2590
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAmiot, Claire. "Cluster categories for algebras of global dimension 2 and quivers with potential." Annales de l’institut Fourier 59.6 (2009): 2525-2590. <http://eudml.org/doc/10463>.
@article{Amiot2009,
abstract = {Let $k$ be a field and $A$ a finite-dimensional $k$-algebra of global dimension $\le 2$. We construct a triangulated category $\{\mathcal\{C\}\}_A $ associated to $A$ which, if $A$ is hereditary, is triangle equivalent to the cluster category of $A$. When $\{\mathcal\{C\}\}_A $ is Hom-finite, we prove that it is 2-CY and endowed with a canonical cluster-tilting object. This new class of categories contains some of the stable categories of modules over a preprojective algebra studied by Geiss-Leclerc-Schröer and by Buan-Iyama-Reiten-Scott. Our results also apply to quivers with potential. Namely, we introduce a cluster category $\{\mathcal\{C\}\}_\{(Q,W)\}$ associated to a quiver with potential $(Q,W)$. When it is Jacobi-finite we prove that it is endowed with a cluster-tilting object whose endomorphism algebra is isomorphic to the Jacobian algebra $\{\mathcal\{J\}\}(Q,W)$.},
affiliation = {Université Paris 7 Institut de Mathématiques de Jussieu Théorie des groupes et des représentations Case 7012 2 Place Jussieu 75251 Paris Cedex 05 (France)},
author = {Amiot, Claire},
journal = {Annales de l’institut Fourier},
keywords = {Cluster category; Calabi-Yau category; cluster-tilting; quiver with potential; preprojective algebra; cluster categories; Calabi-Yau categories; triangulated categories; quivers with potential; stable categories of modules; preprojective algebras},
language = {eng},
number = {6},
pages = {2525-2590},
publisher = {Association des Annales de l’institut Fourier},
title = {Cluster categories for algebras of global dimension 2 and quivers with potential},
url = {http://eudml.org/doc/10463},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Amiot, Claire
TI - Cluster categories for algebras of global dimension 2 and quivers with potential
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 6
SP - 2525
EP - 2590
AB - Let $k$ be a field and $A$ a finite-dimensional $k$-algebra of global dimension $\le 2$. We construct a triangulated category ${\mathcal{C}}_A $ associated to $A$ which, if $A$ is hereditary, is triangle equivalent to the cluster category of $A$. When ${\mathcal{C}}_A $ is Hom-finite, we prove that it is 2-CY and endowed with a canonical cluster-tilting object. This new class of categories contains some of the stable categories of modules over a preprojective algebra studied by Geiss-Leclerc-Schröer and by Buan-Iyama-Reiten-Scott. Our results also apply to quivers with potential. Namely, we introduce a cluster category ${\mathcal{C}}_{(Q,W)}$ associated to a quiver with potential $(Q,W)$. When it is Jacobi-finite we prove that it is endowed with a cluster-tilting object whose endomorphism algebra is isomorphic to the Jacobian algebra ${\mathcal{J}}(Q,W)$.
LA - eng
KW - Cluster category; Calabi-Yau category; cluster-tilting; quiver with potential; preprojective algebra; cluster categories; Calabi-Yau categories; triangulated categories; quivers with potential; stable categories of modules; preprojective algebras
UR - http://eudml.org/doc/10463
ER -
References
top- C. Amiot, On the structure of triangulated categories with finitely many indecomposables, Bull. Soc. Math. France 135 (2007), 435-474 Zbl1158.18005MR2430189
- C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, preprint (2008) Zbl1239.16011
- C. Amiot, Sur les petites catégories triangulées, (2008)
- Handbook of Tilting Theory, 332 (2007), Angeleri-HügelL.L. Zbl1106.16300MR2385175
- H. Asashiba, The derived equivalence classification of representation-finite selfinjective algebras, J. Algebra 214 (1999), 182-221 Zbl0949.16013MR1684880
- I. Assem, T. Brüstle, R. Schiffler, Cluster-tilted algebras as trivial extensions Zbl1182.16009
- M. Auslander, Functors and morphisms determined by objects, Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976) (1978), 1-244. Lecture Notes in Pure Appl. Math., Vol. 37, Dekker, New York Zbl0383.16015MR480688
- M. Auslander, Isolated singularities and existence of almost split sequences, Representation theory, II (Ottawa, Ont., 1984) 1178 (1986), 194-242, Springer, Berlin Zbl0633.13007MR842486
- M. Auslander, I. Reiten, McKay quivers and extended Dynkin diagrams, Trans. Amer. Math. Soc. 293 (1986), 293-301 Zbl0588.20001MR814923
- M. Auslander, I. Reiten, Cohen-Macaulay and Gorenstein Artin algebras, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991) 95 (1991), 221-245, Birkhäuser, Basel Zbl0776.16003MR1112162
- R. Bautista, P. Gabriel, A. V. Roĭter, L. Salmerón, Representation-finite algebras and multiplicative bases, Invent. Math. 81 (1985), 217-285 Zbl0575.16012MR799266
- A. Beĭlinson, J. Bernstein, P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) 100 (1982), 5-171, Soc. Math. France, Paris Zbl0536.14011MR751966
- A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52 Zbl1135.16013MR2110627
- J. Białkowski, K. Erdmann, A. Skowroński, Deformed preprojective algebras of generalized Dynkin type, Trans. Amer. Math. Soc. 359 (2007), 2625-2650 (electronic) Zbl1117.16005MR2286048
- J. Białkowski, A. Skowroński, Nonstandard additively finite triangulated categories of Calabi-Yau dimension one in characteristic 3 Zbl1164.16006
- J. Białkowski, A. Skowroński, Calabi-Yau stable module categories of finite type, (2006) Zbl1168.16003
- R. Bocklandt, Graded Calabi-Yau algebras of dimension 3, (2007) Zbl1132.16017MR2355031
- S. Brenner, M. C. R. Butler, A. D. King, Periodic algebras which are almost Koszul, Algebr. Represent. Theory 5 (2002), 331-367 Zbl1056.16003MR1930968
- A. B. Buan, O. Iyama, I. Reiten, J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups, (2007) Zbl1181.18006
- A. B. Buan, O. Iyama, I. Reiten, D. Smith, Mutation of cluster-tilting objects and potentials, (2008) Zbl1285.16012
- A. B. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618 Zbl1127.16011MR2249625
- A. B. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), 323-332 (electronic) Zbl1123.16009MR2247893
- A. B. Buan, R. Marsh, I. Reiten, Cluster mutation via quiver representations, Comment. Math. Helv. 83 (2008), 143-177 Zbl1193.16016MR2365411
- A. B. Buan, R. Marsh, I. Reiten, G. Todorov, Clusters and seeds in acyclic cluster algebras, Proc. Amer. Math. Soc. 135 (2007), 3049-3060 (electronic) Zbl1190.16022MR2322734
- P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595-616 Zbl1119.16013MR2250855
- P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations arising from clusters ( case), Trans. Amer. Math. Soc. 358 (2006), 1347-1364 (electronic) Zbl1137.16020MR2187656
- P. Caldero, B. Keller, From triangulated categories to cluster algebras. II, Ann. Sci. École Norm. Sup. (4) 39 (2006), 983-1009 Zbl1115.18301MR2316979
- P. Caldero, B. Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (2008), 169-211 Zbl1141.18012MR2385670
- J. Chuang, R. Rouquier, ???????
- H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potentials and their representations I: Mutations, (2007) Zbl1204.16008MR2480710
- E. Dieterich, The Auslander-Reiten quiver of an isolated singularity, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) 1273 (1987), 244-264, Springer, Berlin Zbl0632.14004MR915179
- K. Erdmann, N. Snashall, On Hochschild cohomology of preprojective algebras. I, II, J. Algebra 205 (1998), 391-412, 413–434 Zbl0937.16013MR1632808
- K. Erdmann, N. Snashall, Preprojective algebras of Dynkin type, periodicity and the second Hochschild cohomology, Algebras and modules, II (Geiranger, 1996) 24 (1998), 183-193, Amer. Math. Soc., Providence, RI Zbl1034.16501MR1648626
- S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529 (electronic) Zbl1021.16017MR1887642
- S. Fomin, A. Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121 Zbl1054.17024MR2004457
- S. Fomin, A. Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164 Zbl1127.16023MR2295199
- C. Fu, B. Keller, On cluster algebras with coefficients and 2-Calabi-Yau categories, (2007) Zbl1201.18007
- P. Gabriel, A. V. Roĭter, Representations of finite-dimensional algebras, Algebra, VIII 73 (1992), 1-177, Springer, Berlin Zbl0839.16001MR1239447
- Werner Geigle, Helmut Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) 1273 (1987), 265-297, Springer, Berlin Zbl0651.14006MR915180
- C. Geiß, B. Leclerc, J. Schröer, Partial flag varieties and preprojective algebras, Ann. Inst. Fourier (to appear) (2006) Zbl1151.16009MR2427512
- C. Geiß, B. Leclerc, J. Schröer, Rigid modules over preprojective algebras, Invent. Math. 165 (2006), 589-632 Zbl1167.16009MR2242628
- C. Geiß, B. Leclerc, J. Schröer, Auslander algebras and initial seeds for cluster algebras, J. London Math. Soc. (2) 75 (2007), 718-740 Zbl1135.17007MR2352732
- C. Geiß, B. Leclerc, J. Schröer, Cluster algebra structures and semi-canonical bases for unipotent groups, (2007) Zbl1135.17007
- V. Ginzburg, Calabi-Yau algebras, (2006)
- D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987), 339-389 Zbl0626.16008MR910167
- D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, 119 (1988), Cambridge University Press, Cambridge Zbl0635.16017MR935124
- D. Happel, A characterization of hereditary categories with tilting object, Invent. Math. 144 (2001), 381-398 Zbl1015.18006MR1827736
- D. Happel, U. Preiser, C. M. Ringel, Binary polyhedral groups and Euclidean diagrams, Manuscripta Math. 31 (1980), 317-329 Zbl0436.20005MR576503
- D. Happel, U. Preiser, C. M. Ringel, Vinberg’s characterization of Dynkin diagrams using subadditive functions with application to -periodic modules, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) 832 (1980), 280-294, Springer, Berlin Zbl0446.16032MR607159
- D. Happel, I. Reiten, A characterization of the hereditary categories derived equivalent to some category of coherent sheaves on a weighted projective line, Proc. Amer. Math. Soc. 130 (2002), 643-651 (electronic) Zbl1043.16006MR1866014
- A. Heller, Stable homotopy categories, Bull. Amer. Math. Soc. 74 (1968), 28-63 Zbl0177.25605MR224090
- T. Holm, P. Jørgensen, Cluster categories and selfinjective algebras: type A, (2006)
- T. Holm, P. Jørgensen, Cluster categories and selfinjective algebras: type D, (2006)
- O. Iyama, Y. Yoshino, Mutations in triangulated categories and rigid Cohen-Macaulay modules, (2006) Zbl1140.18007
- B. Keller, Derived categories and universal problems, Comm. Algebra 19 (1991), 699-747 Zbl0722.18002MR1102982
- B. Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), 63-102 Zbl0799.18007MR1258406
- B. Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551-581 (electronic) Zbl1086.18006MR2184464
- B. Keller, On differential graded categories, International Congress of Mathematicians. Vol. II (2006), 151-190, Eur. Math. Soc., Zürich Zbl1140.18008MR2275593
- B. Keller, Calabi-Yau triangulated categories, (2008) Zbl1202.16014
- B. Keller, Deformed CY-completions and their duals, (2008)
- B. Keller, On triangulated orbit categories, correction, (2008)
- B. Keller, I. Reiten, Acyclic Calabi-Yau categories, (2006) Zbl1171.18008
- B. Keller, I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 (2007), 123-151 Zbl1128.18007MR2313531
- B. Keller, D. Vossieck, Sous les catégories dérivées, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 225-228 Zbl0628.18003MR907948
- B. Keller, D. Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. 40 (1988), 239-253 Zbl0671.18003MR976638
- B. Keller, D. Yang, Quiver mutation and derived equivalences, (2008)
- M. Kontsevich, Y. Soibelman, Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I, (2006) Zbl1114.14027
- M. Künzer, On lifting diagrams in Frobenius categories, (2005) Zbl1108.18006
- R. Marsh, M. Reineke, A. Zelevinsky, Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003), 4171-4186 (electronic) Zbl1042.52007MR1990581
- A. Neeman, Triangulated categories, 148 (2001), Princeton University Press, Princeton, NJ Zbl0974.18008MR1812507
- Y. Palu, On algebraic Calabi-Yau categories Zbl1154.16008
- Y. Palu, Grothendieck group and generalized mutation rule for 2-Calabi–Yau triangulated categories, (2008) Zbl1167.18003MR2497588
- I. Reiten, Calabi-Yau categories, (CIRM 2007)
- I. Reiten, M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), 295-366 (electronic) Zbl0991.18009MR1887637
- C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), 199-224 Zbl0444.16018MR576602
- C. Riedtmann, Representation-finite self-injective algebras of class , Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) 832 (1980), 449-520, Springer, Berlin Zbl0455.16014MR607169
- C. Riedtmann, Many algebras with the same Auslander-Reiten quiver, Bull. London Math. Soc. 15 (1983), 43-47 Zbl0487.16021MR686347
- C. Riedtmann, Representation-finite self-injective algebras of class , Compos. Math. 49 (1983), 231-282 Zbl0514.16019MR704393
- C. M. Ringel, Tame algebras and integral quadratic forms, 1099 (1984), Springer-Verlag, Berlin Zbl0546.16013MR774589
- C. M. Ringel, The preprojective algebra of a quiver, Algebras and modules, II (Geiranger, 1996) 24 (1998), 467-480, Amer. Math. Soc., Providence, RI Zbl0928.16012MR1648647
- C. M. Ringel, Hereditary triangulated categories, Compos. Math. (2006)
- G. Tabuada, On the structure of Calabi-Yau categories with a cluster tilting subcategory, Doc. Math. 12 (2007), 193-213 (electronic) Zbl1122.18007MR2302527
- M. Tepetla, Ph. D.
- J.-L. Verdier, Catégories dérivées. Quelques résultats, Lect. Notes Math. 569 (1977), 262-311 Zbl0407.18008
- Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque (1996) Zbl0882.18010MR1453167
- J. Xiao, B. Zhu, Relations for the Grothendieck groups of triangulated categories, J. Algebra 257 (2002), 37-50 Zbl1021.18004MR1942270
- J. Xiao, B. Zhu, Locally finite triangulated categories, J. Algebra 290 (2005), 473-490 Zbl1110.16013MR2153264
- Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, 146 (1990), Cambridge University Press, Cambridge Zbl0745.13003MR1079937
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.