Le bas du spectre d'une variété hyperbolique est un point selle

Olivier Mohsen

Annales scientifiques de l'École Normale Supérieure (2007)

  • Volume: 40, Issue: 2, page 191-207
  • ISSN: 0012-9593

How to cite

top

Mohsen, Olivier. "Le bas du spectre d'une variété hyperbolique est un point selle." Annales scientifiques de l'École Normale Supérieure 40.2 (2007): 191-207. <http://eudml.org/doc/82711>.

@article{Mohsen2007,
author = {Mohsen, Olivier},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {hyperbolic metric; spectrum; compact manifold},
language = {fre},
number = {2},
pages = {191-207},
publisher = {Elsevier},
title = {Le bas du spectre d'une variété hyperbolique est un point selle},
url = {http://eudml.org/doc/82711},
volume = {40},
year = {2007},
}

TY - JOUR
AU - Mohsen, Olivier
TI - Le bas du spectre d'une variété hyperbolique est un point selle
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 2
SP - 191
EP - 207
LA - fre
KW - hyperbolic metric; spectrum; compact manifold
UR - http://eudml.org/doc/82711
ER -

References

top
  1. [1] Anderson M., Schoen R., Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math.121 (1985) 429-461. Zbl0587.53045MR794369
  2. [2] Besson G., Courtois G., Gallot S., Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal.5 (5) (1995) 731-799. Zbl0851.53032MR1354289
  3. [3] Besson G., Courtois G., Gallot S., Les variétés hyperboliques sont des minima locaux de l'entropie topologique, Invent. Math.117 (3) (1994) 403-445. Zbl0814.53031MR1283725
  4. [4] Besson G., Courtois G., Gallot S., Volume et entropie minimale des espaces localement symétriques, Invent. Math.103 (2) (1991) 417-445. Zbl0723.53029MR1085114
  5. [5] Besse A.L., Einstein manifolds, Ergeb. Math. Grenzgeb., vol. 10, Springer-Verlag, Berlin/Heidelberg/New York, 1987. Zbl0613.53001MR867684
  6. [6] Bourdon M., Structure conforme au bord et flot géodésique d'un CAT (−1)-espace, L'enseignement mathématique41 (1995) (1985) 63-102. Zbl0871.58069
  7. [7] Foulon P., Labourie F., Sur les variétés compactes asymptotiquement harmoniques, Invent. Math.109 (1992) 97-111. Zbl0767.53030MR1168367
  8. [8] Garnett L., Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal.51 (1983) 285-311. Zbl0524.58026MR703080
  9. [9] Ghys É., de La Harpe P., Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990. Zbl0731.20025MR1086648
  10. [10] Hamenstädt U., Harmonic measures, Hausdorff measures and positive eigenfunctions, J. Differential Geom.44 (1996) 1-31. Zbl0881.58070MR1420348
  11. [11] Kaimanovich V.A., Brownian motion and harmonic functions on covering manifolds. An entropy approach, English translation, Soviet Math. Dokl.33 (1986) (1985) 812-816. Zbl0615.60074MR852647
  12. [12] Ledrappier F., Structure au bord des variétés à courbure négative, in: Séminaire de Théorie Spectrale et Géométrie, No. 13, année 1994–1995, Univ. Grenoble I, Saint-Martin-d'Hères, 1995, pp. 97-122. Zbl0931.53005
  13. [13] Ledrappier F., Harmonic 1-forms on the stable foliation, Bol. Soc. Brasil. Mat. (N.S.)25 (2) (1994) 121-138. Zbl0821.58034MR1306557
  14. [14] Ledrappier F., A heat kernel characterization of asymptotic harmonicity, Proc. Amer. Math. Soc.118 (1993) 1001-1004. Zbl0777.58037MR1137226
  15. [15] Ledrappier F., Ergodic properties of the stable foliations, in: Ergodic Theory and Related Topics III, Güstrow, 1990, Lecture Notes in Math., vol. 1514, Springer-Verlag, Berlin, 1992, pp. 131-145. Zbl0768.58028MR1179178
  16. [16] Ledrappier F., Harmonic measures and Bowen–Margulis measures, Israel J. Math.71 (1) (1990) 275-287. Zbl0728.53029
  17. [17] Ledrappier F., Ergodic properties of Brownian motion on covers of compact negatively-curve manifolds, Bol. Soc. Brasil. Mat.19 (1) (1990) 115-140. Zbl0685.58036MR1018929
  18. [18] Roblin T., Ergodicité et équidistribution en courbure négative, Memoires de la SMF95 (2003). Zbl1056.37034MR2057305

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.