Construction of curious minimal uniquely ergodic homeomorphisms on manifolds : the Denjoy–Rees technique

François Béguin[1]; Sylvain Crovisier; Frédéric Le Roux

  • [1] École Normale Supérieure de Lyon, UMPA, 46 allée d'Italie, 69364 Lyon Cedex 07 (France)

Annales scientifiques de l'École Normale Supérieure (2007)

  • Volume: 40, Issue: 2, page 251-308
  • ISSN: 0012-9593

How to cite

top

Béguin, François, Crovisier, Sylvain, and Le Roux, Frédéric. "Construction of curious minimal uniquely ergodic homeomorphisms on manifolds : the Denjoy–Rees technique." Annales scientifiques de l'École Normale Supérieure 40.2 (2007): 251-308. <http://eudml.org/doc/82713>.

@article{Béguin2007,
affiliation = {École Normale Supérieure de Lyon, UMPA, 46 allée d'Italie, 69364 Lyon Cedex 07 (France)},
author = {Béguin, François, Crovisier, Sylvain, Le Roux, Frédéric},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {representation by homeomorphisms on manifolds; control the measurable dynamics; measurable dynamical systems},
language = {eng},
number = {2},
pages = {251-308},
publisher = {Elsevier},
title = {Construction of curious minimal uniquely ergodic homeomorphisms on manifolds : the Denjoy–Rees technique},
url = {http://eudml.org/doc/82713},
volume = {40},
year = {2007},
}

TY - JOUR
AU - Béguin, François
AU - Crovisier, Sylvain
AU - Le Roux, Frédéric
TI - Construction of curious minimal uniquely ergodic homeomorphisms on manifolds : the Denjoy–Rees technique
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 2
SP - 251
EP - 308
LA - eng
KW - representation by homeomorphisms on manifolds; control the measurable dynamics; measurable dynamical systems
UR - http://eudml.org/doc/82713
ER -

References

top
  1. [1] Anosov D., Katok A., New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow Math. Soc.23 (1970) 1-35. Zbl0255.58007MR370662
  2. [2] Béguin F., Crovisier S., Le Roux F., Patou A., Pseudo-rotations of the closed annulus: variation on a theorem of J. Kwapisz, Nonlinearity17 (4) (2004) 1427-1453. Zbl1077.37032MR2069713
  3. [3] Béguin F., Crovisier S., Le Roux F., Pseudo-rotations of the open annulus: variation on a theorem of J. Kwapisz, Bull. Braz. Math. Soc. (N.S.)37 (2006) 275-306. Zbl1105.37029MR2266384
  4. [4] Béguin F., Crovisier S., Jaeger T., Le Roux F., Denjoy constructions for fibered homeomorphism of the two-torus, in preparation. 
  5. [5] Bing R.H., Tame Cantor sets in E 3 , Pacific J. Math.11 (1961) 435-446. Zbl0111.18606MR130679
  6. [6] Bing R.H., The Geometric Topology of 3-Manifolds, American Mathematical Society Colloquium Publications, vol. 40, American Mathematical Society, Providence, RI, 1983. Zbl0535.57001MR728227
  7. [7] Brown M., A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc.66 (1960) 74-76. Zbl0132.20002MR117695
  8. [8] Denjoy A., Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl. Ser. IX11 (1932) 333-375. Zbl0006.30501
  9. [9] Denker M., Grillenberger C., Sigmund K., Ergodic Theory on Compact Spaces, Springer Lecture Notes in Math., vol. 527, Springer-Verlag, Berlin/New York, 1976. Zbl0328.28008MR457675
  10. [10] Fathi A., Herman M., Existence de difféomorphismes minimaux, in: Dynamical Systems, vol. I, Warsaw, Astérisque, vol. 49, Soc. Math. France, Paris, 1977, 37–59. Zbl0374.58010
  11. [11] Fayad B., Katok A., Constructions in elliptic dynamics, Ergodic Theory Dynam. Systems24 (5) (2004) 1477-1520. Zbl1089.37012MR2104594
  12. [12] Handel M., A pathological area preserving C diffeomorphism of the plane, Proc. Amer. Math. Soc.86 (1) (1982) 163-168. Zbl0509.58031MR663889
  13. [13] Herman M., Construction d'un difféomorphisme minimal d'entropie topologique non-nulle, Ergodic Theory Dynam. Systems1 (1981) 65-76. Zbl0469.58008MR627787
  14. [14] Herman M., Construction of some curious diffeomorphisms of the Riemann sphere, J. London Math. Soc. (2)34 (2) (1986) 375-384. Zbl0603.58017MR856520
  15. [15] Homma T., On tame imbedding of 0-dimensional compact sets in E 3 , Yokohama Math. J.7 (1959) 191-195. Zbl0094.36005MR124037
  16. [16] Jäger T., Stark J., Towards a classification for quasi-periodically forced circle homeomorphisms, J. London Math. Soc.73 (2006) 727-744. Zbl1095.37013MR2241977
  17. [17] Katok A., Lyapounov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathématiques de l'I.H.É.S.51 (1980) 131-173. Zbl0445.58015MR573822
  18. [18] Le Calvez P., Rotation numbers in the infinite annulus, Proc. Amer. Math. Soc.129 (11) (2001) 3221-3230. Zbl0990.37029MR1844997
  19. [19] Lind D., Thouvenot J.-P., Measure-preserving homeomorphisms of the torus represent all finite entropy ergodic transformations, Math. Systems Theory11 (3) (1977/78) 275-282. Zbl0377.28011MR584588
  20. [20] Osborne R.P., Embedding Cantor sets in a manifold. I. Tame Cantor sets in E n , Michigan Math. J.13 (1966) 57-63. Zbl0138.18902MR187225
  21. [21] Oxtoby J.C., Ulam S.M., Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2)42 (1941) 874-920. Zbl0063.06074MR5803
  22. [22] Rees M., A minimal positive entropy homeomorphism of the 2-torus, J. London Math. Soc.23 (1981) 537-550. Zbl0451.58022MR616561
  23. [23] Sanford M.D., Walker R.B., Extending maps of a Cantor set product with an arc to near homeomorphisms of the 2-disk, Pacific J. Math.192 (2) (2000) 369-384. Zbl1092.37502MR1744576
  24. [24] Thouvenot J.-P., Entropy, isomorphisms and equivalence, in: Katok A., Hasselblatt B. (Eds.), Handbook of Dynamical Systems, vol. 1A, Elsevier, Amsterdam, 2002. Zbl1084.37007MR1928517

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.