Finiteness of and geometric inequalities in almost positive Ricci curvature
Annales scientifiques de l'École Normale Supérieure (2007)
- Volume: 40, Issue: 4, page 675-695
- ISSN: 0012-9593
Access Full Article
topHow to cite
topAubry, Erwann. "Finiteness of ${\pi }_{1}$ and geometric inequalities in almost positive Ricci curvature." Annales scientifiques de l'École Normale Supérieure 40.4 (2007): 675-695. <http://eudml.org/doc/82723>.
@article{Aubry2007,
author = {Aubry, Erwann},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Myers theorem; -control; Gromov-Hausdorff distance; Ricci curvature},
language = {eng},
number = {4},
pages = {675-695},
publisher = {Elsevier},
title = {Finiteness of $\{\pi \}_\{1\}$ and geometric inequalities in almost positive Ricci curvature},
url = {http://eudml.org/doc/82723},
volume = {40},
year = {2007},
}
TY - JOUR
AU - Aubry, Erwann
TI - Finiteness of ${\pi }_{1}$ and geometric inequalities in almost positive Ricci curvature
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 4
SP - 675
EP - 695
LA - eng
KW - Myers theorem; -control; Gromov-Hausdorff distance; Ricci curvature
UR - http://eudml.org/doc/82723
ER -
References
top- [1] Ambrose W., A theorem of Myers, Duke Math. J.24 (1957) 345-348. Zbl0078.14204MR89464
- [2] Aubry E., Variétés de courbure de Ricci presque minorée : inégalités géométriques optimales et stabilité des variétés extrémales, Thèse, Institut Fourier, Grenoble (2003).
- [3] Avez A., Riemannian manifolds with non-negative Ricci curvature, Duke Math. J.39 (1972) 55-64. Zbl0251.53017MR290286
- [4] Bakry D., Ledoux M., Sobolev inequalities and Myers' diameter theorem for an abstract Markov generator, Duke Math. J. (1996) 253-270. Zbl0870.60071MR1412446
- [5] Calabi E., On Ricci curvature and geodesics, Duke Math. J.34 (1967) 667-676. Zbl0153.51501MR216429
- [6] Cheeger J., Degeneration of Riemannian metrics under Ricci curvature bounds, Piza (2001). Zbl1055.53024MR2006642
- [7] Elworthy K., Rosenberg S., Manifolds with Wells of negative Curvature, Invent. Math.103 (1991) 471-495. Zbl0722.53033MR1091615
- [8] Gallot S., Isoperimetric inequalities based on integral norms of the Ricci curvature, Astérisque157–158 (1988) 191-216. Zbl0665.53041
- [9] Gromov M., Metric Structures for Riemannian and Non-Riemannian Spaces, Progress in Mathematics, vol. 152, Birkhäuser, Boston, 1999. Zbl0953.53002MR1699320
- [10] Galloway G., A generalization of Myers theorem and an application to relativistic cosmology, J. Diff. Geom.14 (1979) 105-116. Zbl0444.53036MR577883
- [11] Lohkamp J., Curvature h-principles, Ann. of Math.142 (1995) 457-498. Zbl0909.58005MR1356779
- [12] Markvorsen S., A Ricci curvature criterion for compactness of Riemannian manifolds, Arch. Math.39 (1982) 85-91. Zbl0497.53046MR674537
- [13] Myers S., Riemannian manifolds with positive mean curvature, Duke Math. J. (1941) 401-404. Zbl0025.22704MR4518
- [14] Petersen P., Sprouse C., Integral curvature bounds, distance estimates and applications, J. Diff. Geom.50 (1998) 269-298. Zbl0969.53017MR1684981
- [15] Petersen P., Wei G., Relative volume comparison with integral curvature bounds, Geom. Funct. Anal.7 (1997) 1031-1045. Zbl0910.53029MR1487753
- [16] Petersen P., Wei G., Analysis and geometry on manifolds with integral curvature bounds. II, Trans. AMS353 (2) (2000) 457-478. Zbl0999.53030
- [17] Rosenberg S., Yang D., Bounds on the fundamental group of a manifold with almost non-negative Ricci curvature, J. Math. Soc. Japan46 (1994) 267-287. Zbl0818.53058MR1264942
- [18] Sakai T., Riemannian Geometry, Amer. Math. Soc., Providence, Rhode Island, 1996. Zbl0886.53002
- [19] Sprouse C., Integral curvature bounds and bounded diameter, Comm. Anal. Geom.8 (2000) 531-543. Zbl0984.53018MR1775137
- [20] Wu J., Complete manifolds with a little negative curvature, Am. J. Math.113 (1991) 567-572. Zbl0744.53028MR1118454
- [21] Yang D., Convergence of Riemannian manifolds with integral bounds on curvature I, Ann. Sci. Éc. Norm. Sup.25 (1992) 77-105. Zbl0748.53025MR1152614
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.