Finiteness of π 1 and geometric inequalities in almost positive Ricci curvature

Erwann Aubry

Annales scientifiques de l'École Normale Supérieure (2007)

  • Volume: 40, Issue: 4, page 675-695
  • ISSN: 0012-9593

How to cite

top

Aubry, Erwann. "Finiteness of ${\pi }_{1}$ and geometric inequalities in almost positive Ricci curvature." Annales scientifiques de l'École Normale Supérieure 40.4 (2007): 675-695. <http://eudml.org/doc/82723>.

@article{Aubry2007,
author = {Aubry, Erwann},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Myers theorem; -control; Gromov-Hausdorff distance; Ricci curvature},
language = {eng},
number = {4},
pages = {675-695},
publisher = {Elsevier},
title = {Finiteness of $\{\pi \}_\{1\}$ and geometric inequalities in almost positive Ricci curvature},
url = {http://eudml.org/doc/82723},
volume = {40},
year = {2007},
}

TY - JOUR
AU - Aubry, Erwann
TI - Finiteness of ${\pi }_{1}$ and geometric inequalities in almost positive Ricci curvature
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 4
SP - 675
EP - 695
LA - eng
KW - Myers theorem; -control; Gromov-Hausdorff distance; Ricci curvature
UR - http://eudml.org/doc/82723
ER -

References

top
  1. [1] Ambrose W., A theorem of Myers, Duke Math. J.24 (1957) 345-348. Zbl0078.14204MR89464
  2. [2] Aubry E., Variétés de courbure de Ricci presque minorée : inégalités géométriques optimales et stabilité des variétés extrémales, Thèse, Institut Fourier, Grenoble (2003). 
  3. [3] Avez A., Riemannian manifolds with non-negative Ricci curvature, Duke Math. J.39 (1972) 55-64. Zbl0251.53017MR290286
  4. [4] Bakry D., Ledoux M., Sobolev inequalities and Myers' diameter theorem for an abstract Markov generator, Duke Math. J. (1996) 253-270. Zbl0870.60071MR1412446
  5. [5] Calabi E., On Ricci curvature and geodesics, Duke Math. J.34 (1967) 667-676. Zbl0153.51501MR216429
  6. [6] Cheeger J., Degeneration of Riemannian metrics under Ricci curvature bounds, Piza (2001). Zbl1055.53024MR2006642
  7. [7] Elworthy K., Rosenberg S., Manifolds with Wells of negative Curvature, Invent. Math.103 (1991) 471-495. Zbl0722.53033MR1091615
  8. [8] Gallot S., Isoperimetric inequalities based on integral norms of the Ricci curvature, Astérisque157–158 (1988) 191-216. Zbl0665.53041
  9. [9] Gromov M., Metric Structures for Riemannian and Non-Riemannian Spaces, Progress in Mathematics, vol. 152, Birkhäuser, Boston, 1999. Zbl0953.53002MR1699320
  10. [10] Galloway G., A generalization of Myers theorem and an application to relativistic cosmology, J. Diff. Geom.14 (1979) 105-116. Zbl0444.53036MR577883
  11. [11] Lohkamp J., Curvature h-principles, Ann. of Math.142 (1995) 457-498. Zbl0909.58005MR1356779
  12. [12] Markvorsen S., A Ricci curvature criterion for compactness of Riemannian manifolds, Arch. Math.39 (1982) 85-91. Zbl0497.53046MR674537
  13. [13] Myers S., Riemannian manifolds with positive mean curvature, Duke Math. J. (1941) 401-404. Zbl0025.22704MR4518
  14. [14] Petersen P., Sprouse C., Integral curvature bounds, distance estimates and applications, J. Diff. Geom.50 (1998) 269-298. Zbl0969.53017MR1684981
  15. [15] Petersen P., Wei G., Relative volume comparison with integral curvature bounds, Geom. Funct. Anal.7 (1997) 1031-1045. Zbl0910.53029MR1487753
  16. [16] Petersen P., Wei G., Analysis and geometry on manifolds with integral curvature bounds. II, Trans. AMS353 (2) (2000) 457-478. Zbl0999.53030
  17. [17] Rosenberg S., Yang D., Bounds on the fundamental group of a manifold with almost non-negative Ricci curvature, J. Math. Soc. Japan46 (1994) 267-287. Zbl0818.53058MR1264942
  18. [18] Sakai T., Riemannian Geometry, Amer. Math. Soc., Providence, Rhode Island, 1996. Zbl0886.53002
  19. [19] Sprouse C., Integral curvature bounds and bounded diameter, Comm. Anal. Geom.8 (2000) 531-543. Zbl0984.53018MR1775137
  20. [20] Wu J., Complete manifolds with a little negative curvature, Am. J. Math.113 (1991) 567-572. Zbl0744.53028MR1118454
  21. [21] Yang D., Convergence of Riemannian manifolds with integral bounds on curvature I, Ann. Sci. Éc. Norm. Sup.25 (1992) 77-105. Zbl0748.53025MR1152614

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.