Bounds for modular L-functions in the level aspect
Valentin Blomer[1]; Gergely Harcos; Philippe Michel
- [1] University of Toronto, Department of Mathematics, 100 St. George Street, Toronto M5S 3G3, Ontario, (Canada)
Annales scientifiques de l'École Normale Supérieure (2007)
- Volume: 40, Issue: 5, page 697-740
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBlomer, Valentin, Harcos, Gergely, and Michel, Philippe. "Bounds for modular L-functions in the level aspect." Annales scientifiques de l'École Normale Supérieure 40.5 (2007): 697-740. <http://eudml.org/doc/82724>.
@article{Blomer2007,
affiliation = {University of Toronto, Department of Mathematics, 100 St. George Street, Toronto M5S 3G3, Ontario, (Canada)},
author = {Blomer, Valentin, Harcos, Gergely, Michel, Philippe},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {5},
pages = {697-740},
publisher = {Elsevier},
title = {Bounds for modular L-functions in the level aspect},
url = {http://eudml.org/doc/82724},
volume = {40},
year = {2007},
}
TY - JOUR
AU - Blomer, Valentin
AU - Harcos, Gergely
AU - Michel, Philippe
TI - Bounds for modular L-functions in the level aspect
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 5
SP - 697
EP - 740
LA - eng
UR - http://eudml.org/doc/82724
ER -
References
top- [1] Blomer V., Harcos G., Hybrid bounds for twisted L-functions, J. reine angew. Math., in press. Zbl1296.11047
- [2] Blomer V., Harcos G., Michel P., A Burgess-like subconvex bound for twisted L-functions (with Appendix 2 by Z. Mao), Forum Math.19 (2007) 61-105. Zbl1168.11014MR2296066
- [3] Burgess D.A., On character sums and L-series. II, Proc. Lond. Math. Soc.13 (1963) 524-536. Zbl0123.04404MR148626
- [4] Bykovskiĭ V.A., A trace formula for the scalar product of Hecke series and its applications, translated in, J. Math. Sci (New York)89 (1998) 915-932. Zbl0898.11017MR1433344
- [5] Deshouillers J.-M., Iwaniec H., Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math.70 (1982) 219-288. Zbl0502.10021MR684172
- [6] Duke W., Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math.92 (1988) 73-90. Zbl0628.10029MR931205
- [7] Duke W., Friedlander J., Iwaniec H., A quadratic divisor problem, Invent. Math.115 (1994) 209-217. Zbl0791.11049MR1258903
- [8] Duke W., Friedlander J., Iwaniec H., Bounds for automorphic L-functions. II, Invent. Math.115 (1994) 219-239. Zbl0812.11032MR1258904
- [9] Duke W., Friedlander J., Iwaniec H., Representations by the determinant and mean values of L-functions, in: Sieve Methods, Exponential Sums, and Their Applications in Number Theory, Cardiff, 1995, London Math. Soc. Lecture Note Ser., vol. 237, Cambridge Univ. Press, Cambridge, 1997, pp. 109-115. Zbl0927.11046MR1635738
- [10] Duke W., Friedlander J., Iwaniec H., Bounds for automorphic L-functions. III, Invent. Math.143 (2001) 221-248. Zbl1163.11325MR1835388
- [11] Duke W., Friedlander J., Iwaniec H., The subconvexity problem for Artin L-functions, Invent. Math.149 (2002) 489-577. Zbl1056.11072MR1923476
- [12] Einsiedler M., Lindenstrauss E., Michel P., Venkatesh A., Distribution of periodic torus orbits and Duke's theorem for cubic fields, submitted for publication. Zbl1248.37009
- [13] Friedlander J., Bounds for L-functions, in: Zürich, 1994, Proc. Int. Congr. Math., vol. II, Birkhäuser, Basel, 1995, pp. 363-373. Zbl0843.11040MR1403937
- [14] Gelbart S., Jacquet H., Forms on from the analytic point of view, in: Borel A., Casselman W. (Eds.), Automorphic Forms, Representations, and L-Functions, Part 1, Proc. Sympos. Pure Math., vol. 33, 1979, pp. 213-251. Zbl0409.22013MR546600
- [15] Gradshteyn I.S., Ryzhik I.M., Tables of Integrals, Series, and Products, fifth ed., Academic Press, New York, 1994. Zbl0918.65002
- [16] Harcos G., Uniform approximate functional equation for principal L-functions, Int. Math. Res. Not. (2002) 923-932, Erratum, Int. Math. Res. Not. (2004) 659-660. Zbl0998.11026MR1902296
- [17] Harcos G., Michel P., The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points. II, Invent. Math.163 (2006) 581-655. Zbl1111.11027
- [18] Heath-Brown D.R., Hybrid bounds for Dirichlet L-functions. II, Quart. J. Math. Oxford Ser. (2)31 (1980) 157-167. Zbl0396.10030MR576334
- [19] Iwaniec H., Spectral Methods of Automorphic Forms, second ed., Graduate Studies Mathematics, vol. 53, American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. Zbl1006.11024MR1942691
- [20] Iwaniec H., Kowalski E., Analytic Number Theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. Zbl1059.11001MR2061214
- [21] Iwaniec H., Sarnak P., Perspectives in the analytic theory of L-functions, Geom. Funct. Anal. (2000) 705-741, Special Volume, Part II. Zbl0996.11036MR1826269
- [22] Jutila M., Convolutions of Fourier coefficients of cusp forms, Publ. Inst. Math. (Beograd) (N.S.)65 (79) (1999) 31-51. Zbl1006.11019MR1717400
- [23] Kim H., Functoriality for the exterior square of and the symmetric fourth of (with Appendix 1 by D. Ramakrishnan and Appendix 2 by H. Kim and P. Sarnak), J. Amer. Math. Soc.16 (2003) 139-183. Zbl1018.11024MR1937203
- [24] Kowalski E., Michel P., VanderKam J., Mollification of the fourth moment of automorphic L-functions and arithmetic applications, Invent. Math.142 (2000) 95-151. Zbl1054.11026MR1784797
- [25] Meurman T., On the binary additive divisor problem, in: Number Theory, Turku, 1999, de Gruyter, Berlin, 2001, pp. 223-246. Zbl0967.11039MR1822012
- [26] Michel P., The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points, Ann. of Math.160 (2004) 185-236. Zbl1068.11033
- [27] Michel P., Venkatesh A., Equidistribution, L-functions and ergodic theory: on some problems of Yu. Linnik, in: Madrid, 2006, Proc. Int. Congr. Math., vol. II, Eur. Math. Soc., Zürich, 2006, pp. 421-457. Zbl1157.11019MR2275604
- [28] Proskurin N.V., On the general Kloosterman sums, translated in, J. Math. Sci. (New York)129 (2005) 3874-3889. Zbl1140.11340MR2023036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.