Integral lattices in TQFT
Patrick M. Gilmer; Gregor Masbaum
Annales scientifiques de l'École Normale Supérieure (2007)
- Volume: 40, Issue: 5, page 815-844
- ISSN: 0012-9593
Access Full Article
topHow to cite
topGilmer, Patrick M., and Masbaum, Gregor. "Integral lattices in TQFT." Annales scientifiques de l'École Normale Supérieure 40.5 (2007): 815-844. <http://eudml.org/doc/82727>.
@article{Gilmer2007,
author = {Gilmer, Patrick M., Masbaum, Gregor},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {TQFT; integral bases; SO(3) Reshetikhin-Turaev TQFT; integrality; Frohman-Kania-Bartoszynska ideal; lollipop trees; graph bases},
language = {eng},
number = {5},
pages = {815-844},
publisher = {Elsevier},
title = {Integral lattices in TQFT},
url = {http://eudml.org/doc/82727},
volume = {40},
year = {2007},
}
TY - JOUR
AU - Gilmer, Patrick M.
AU - Masbaum, Gregor
TI - Integral lattices in TQFT
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 5
SP - 815
EP - 844
LA - eng
KW - TQFT; integral bases; SO(3) Reshetikhin-Turaev TQFT; integrality; Frohman-Kania-Bartoszynska ideal; lollipop trees; graph bases
UR - http://eudml.org/doc/82727
ER -
References
top- [1] Bar-Natan D., Knot Atlas, http://www.math.toronto.edu/~drorbn/KAtlas/index.html.
- [2] Beliakova A., Le T.T.Q., Integrality of quantum 3-manifold invariants and rational surgery formula, math.GT/0608627. Zbl1138.57014
- [3] Blanchet C., Habegger N., Masbaum G., Vogel P., Topological quantum field theories derived from the Kauffman bracket, Topology34 (1995) 883-927. Zbl0887.57009MR1362791
- [4] Cochran T., Melvin P., Quantum cyclotomic orders of 3-manifolds, Topology40 (1) (2001) 95-125. Zbl0997.57024MR1791269
- [5] Chen Q., On certain integral tensor categories and integral TQFTs, math.QA/0408356. Zbl1317.81236
- [6] Chen Q., Le T., Almost integral TQFTs from simple Lie algebras, Algebr. Geom. Topol.5 (2005) 1291-1314. Zbl1089.57020MR2171810
- [7] Frohman C., Kania-Bartoszynska J., A quantum obstruction to embedding, Math. Proc. Cambridge Philos. Soc.131 (2001) 279-293. Zbl0991.57023MR1857120
- [8] Gilmer P., Integrality for TQFTs, Duke Math J.125 (2) (2004) 389-413. Zbl1107.57020MR2096678
- [9] Gilmer P., On the Frohman Kania-Bartoszynska ideal, Math. Proc. Cambridge Philos. Soc.141 (2006) 265-271. Zbl1181.57013MR2265873
- [10] Gilmer P., Masbaum G., van Wamelen P., Integral bases for TQFT modules and unimodular representations of mapping class groups, Comment. Math. Helv.79 (2004) 260-284. Zbl1055.57026MR2059432
- [11] Gilmer P., Qazaqzeh K., The parity of the Maslov index and the even cobordism category, Fund. Math.188 (2005) 95-102. Zbl1157.57303MR2191941
- [12] Harvey S., On the cut number of a 3-manifold, Geom. Topol.6 (2002) 409-424. Zbl1021.57006MR1928841
- [13] Jaco W., Geometric realizations for free quotients, J. Austral. Math. Soc.14 (1972) 411-418. Zbl0259.57004MR316571
- [14] Kauffman L.H., Lins S., Temperley–Lieb Recoupling Theory and Invariants of 3-Manifolds, Annals of Mathematics Studies, vol. 134, Princeton University Press, 1994. Zbl0821.57003
- [15] Kerler T., p-modular TQFT's, Milnor torsion and the Casson–Lescop invariant, Geom. Topol. Monogr.4 (2002) 119-141. Zbl1013.57018
- [16] Le T.T.Q., Strong integrality of quantum invariants of 3-manifolds, Trans. AMS, in press, math.GT/0512433.
- [17] Leininger C., Reid A., The co-rank conjecture for 3-manifold groups, Algebr. Geom. Topol.2 (2002) 37-50. Zbl0983.57001MR1885215
- [18] Masbaum G., in preparation.
- [19] Masbaum G., Roberts J., A simple proof of integrality of quantum invariants at prime roots of unity, Math. Proc. Cambridge Philos. Soc.121 (3) (1997) 443-454. Zbl0882.57010MR1434653
- [20] Masbaum G., Vogel P., 3-valent graphs and the Kauffman bracket, Pacific J. Math.164 (1994) 361-381. Zbl0838.57007MR1272656
- [21] Masbaum G., Wenzl H., Integral modular categories and integrality of quantum invariants at roots of unity of prime order, J. reine angew. Math. (Crelle's Journal)505 (1998) 209-235. Zbl0919.57010MR1662260
- [22] Murakami H., Quantum -invariants dominate the -invariant of Casson and Walker, Math. Proc. Cambridge Philos. Soc.117 (2) (1995) 237-249. Zbl0854.57016MR1307078
- [23] Ohtsuki T., A polynomial invariant of rational homology 3-spheres, Invent. Math.123 (2) (1996) 241-257. Zbl0855.57016MR1374199
- [24] Reiner I., Maximal Orders, London Mathematical Society Monographs, vol. 5, Academic Press, London–New York, 1975. Zbl1024.16008
- [25] Reshetikhin N., Turaev V., Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math.103 (1991) 547-597. Zbl0725.57007MR1091619
- [26] Stallings J., Problems about free quotients of groups, in: Geometric Group Theory, Columbus, OH, 1992, Ohio State Univ. Math. Res. Inst. Publ., vol. 3, de Gruyter, Berlin, 1995, pp. 165-182. Zbl0869.20012MR1355111
- [27] Sikora A., Cut numbers of 3-manifolds, Trans. AMS357 (5) (2005) 2007-2020. Zbl1064.57018MR2115088
- [28] Turaev V.G., Quantum Invariants of Knots and 3-Manifolds, de Gruyter, 1994. Zbl0812.57003MR1292673
- [29] Walker K., On Witten's 3-manifold invariants, Preprint, 1991, http://canyon23.net/math/.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.