Integral lattices in TQFT

Patrick M. Gilmer; Gregor Masbaum

Annales scientifiques de l'École Normale Supérieure (2007)

  • Volume: 40, Issue: 5, page 815-844
  • ISSN: 0012-9593

How to cite

top

Gilmer, Patrick M., and Masbaum, Gregor. "Integral lattices in TQFT." Annales scientifiques de l'École Normale Supérieure 40.5 (2007): 815-844. <http://eudml.org/doc/82727>.

@article{Gilmer2007,
author = {Gilmer, Patrick M., Masbaum, Gregor},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {TQFT; integral bases; SO(3) Reshetikhin-Turaev TQFT; integrality; Frohman-Kania-Bartoszynska ideal; lollipop trees; graph bases},
language = {eng},
number = {5},
pages = {815-844},
publisher = {Elsevier},
title = {Integral lattices in TQFT},
url = {http://eudml.org/doc/82727},
volume = {40},
year = {2007},
}

TY - JOUR
AU - Gilmer, Patrick M.
AU - Masbaum, Gregor
TI - Integral lattices in TQFT
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 5
SP - 815
EP - 844
LA - eng
KW - TQFT; integral bases; SO(3) Reshetikhin-Turaev TQFT; integrality; Frohman-Kania-Bartoszynska ideal; lollipop trees; graph bases
UR - http://eudml.org/doc/82727
ER -

References

top
  1. [1] Bar-Natan D., Knot Atlas, http://www.math.toronto.edu/~drorbn/KAtlas/index.html. 
  2. [2] Beliakova A., Le T.T.Q., Integrality of quantum 3-manifold invariants and rational surgery formula, math.GT/0608627. Zbl1138.57014
  3. [3] Blanchet C., Habegger N., Masbaum G., Vogel P., Topological quantum field theories derived from the Kauffman bracket, Topology34 (1995) 883-927. Zbl0887.57009MR1362791
  4. [4] Cochran T., Melvin P., Quantum cyclotomic orders of 3-manifolds, Topology40 (1) (2001) 95-125. Zbl0997.57024MR1791269
  5. [5] Chen Q., On certain integral tensor categories and integral TQFTs, math.QA/0408356. Zbl1317.81236
  6. [6] Chen Q., Le T., Almost integral TQFTs from simple Lie algebras, Algebr. Geom. Topol.5 (2005) 1291-1314. Zbl1089.57020MR2171810
  7. [7] Frohman C., Kania-Bartoszynska J., A quantum obstruction to embedding, Math. Proc. Cambridge Philos. Soc.131 (2001) 279-293. Zbl0991.57023MR1857120
  8. [8] Gilmer P., Integrality for TQFTs, Duke Math J.125 (2) (2004) 389-413. Zbl1107.57020MR2096678
  9. [9] Gilmer P., On the Frohman Kania-Bartoszynska ideal, Math. Proc. Cambridge Philos. Soc.141 (2006) 265-271. Zbl1181.57013MR2265873
  10. [10] Gilmer P., Masbaum G., van Wamelen P., Integral bases for TQFT modules and unimodular representations of mapping class groups, Comment. Math. Helv.79 (2004) 260-284. Zbl1055.57026MR2059432
  11. [11] Gilmer P., Qazaqzeh K., The parity of the Maslov index and the even cobordism category, Fund. Math.188 (2005) 95-102. Zbl1157.57303MR2191941
  12. [12] Harvey S., On the cut number of a 3-manifold, Geom. Topol.6 (2002) 409-424. Zbl1021.57006MR1928841
  13. [13] Jaco W., Geometric realizations for free quotients, J. Austral. Math. Soc.14 (1972) 411-418. Zbl0259.57004MR316571
  14. [14] Kauffman L.H., Lins S., Temperley–Lieb Recoupling Theory and Invariants of 3-Manifolds, Annals of Mathematics Studies, vol. 134, Princeton University Press, 1994. Zbl0821.57003
  15. [15] Kerler T., p-modular TQFT's, Milnor torsion and the Casson–Lescop invariant, Geom. Topol. Monogr.4 (2002) 119-141. Zbl1013.57018
  16. [16] Le T.T.Q., Strong integrality of quantum invariants of 3-manifolds, Trans. AMS, in press, math.GT/0512433. 
  17. [17] Leininger C., Reid A., The co-rank conjecture for 3-manifold groups, Algebr. Geom. Topol.2 (2002) 37-50. Zbl0983.57001MR1885215
  18. [18] Masbaum G., in preparation. 
  19. [19] Masbaum G., Roberts J., A simple proof of integrality of quantum invariants at prime roots of unity, Math. Proc. Cambridge Philos. Soc.121 (3) (1997) 443-454. Zbl0882.57010MR1434653
  20. [20] Masbaum G., Vogel P., 3-valent graphs and the Kauffman bracket, Pacific J. Math.164 (1994) 361-381. Zbl0838.57007MR1272656
  21. [21] Masbaum G., Wenzl H., Integral modular categories and integrality of quantum invariants at roots of unity of prime order, J. reine angew. Math. (Crelle's Journal)505 (1998) 209-235. Zbl0919.57010MR1662260
  22. [22] Murakami H., Quantum SO 3 -invariants dominate the SU 2 -invariant of Casson and Walker, Math. Proc. Cambridge Philos. Soc.117 (2) (1995) 237-249. Zbl0854.57016MR1307078
  23. [23] Ohtsuki T., A polynomial invariant of rational homology 3-spheres, Invent. Math.123 (2) (1996) 241-257. Zbl0855.57016MR1374199
  24. [24] Reiner I., Maximal Orders, London Mathematical Society Monographs, vol. 5, Academic Press, London–New York, 1975. Zbl1024.16008
  25. [25] Reshetikhin N., Turaev V., Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math.103 (1991) 547-597. Zbl0725.57007MR1091619
  26. [26] Stallings J., Problems about free quotients of groups, in: Geometric Group Theory, Columbus, OH, 1992, Ohio State Univ. Math. Res. Inst. Publ., vol. 3, de Gruyter, Berlin, 1995, pp. 165-182. Zbl0869.20012MR1355111
  27. [27] Sikora A., Cut numbers of 3-manifolds, Trans. AMS357 (5) (2005) 2007-2020. Zbl1064.57018MR2115088
  28. [28] Turaev V.G., Quantum Invariants of Knots and 3-Manifolds, de Gruyter, 1994. Zbl0812.57003MR1292673
  29. [29] Walker K., On Witten's 3-manifold invariants, Preprint, 1991, http://canyon23.net/math/. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.