Sur l'existence de la solution classique du problème de Poisson pour les domaines plans

Jindřich Nečas

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1962)

  • Volume: 16, Issue: 3, page 285-296
  • ISSN: 0391-173X

How to cite

top

Nečas, Jindřich. "Sur l'existence de la solution classique du problème de Poisson pour les domaines plans." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.3 (1962): 285-296. <http://eudml.org/doc/83285>.

@article{Nečas1962,
author = {Nečas, Jindřich},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {elliptic equations of order 2k; Poisson problem; weak solution; continuity; plane domains},
language = {fre},
number = {3},
pages = {285-296},
publisher = {Scuola normale superiore},
title = {Sur l'existence de la solution classique du problème de Poisson pour les domaines plans},
url = {http://eudml.org/doc/83285},
volume = {16},
year = {1962},
}

TY - JOUR
AU - Nečas, Jindřich
TI - Sur l'existence de la solution classique du problème de Poisson pour les domaines plans
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1962
PB - Scuola normale superiore
VL - 16
IS - 3
SP - 285
EP - 296
LA - fre
KW - elliptic equations of order 2k; Poisson problem; weak solution; continuity; plane domains
UR - http://eudml.org/doc/83285
ER -

References

top
  1. [1] E. Gagliardo: Proprietà di alcune classi di funzioni in più variabili. Ricerche di matematica, vol.VII, (1958), 102-137. Zbl0089.09401MR102740
  2. [2] S. Agmon, A. Douglis, L. Nirenberg: Estimates near the boundary for solutions of elliptic partial differential equations salisfying general boundary conditions I. Comm. on pure and appl. mathematics, vol. XII, (1959), 623-727. Zbl0093.10401MR125307
  3. [3] G. Tautz: Reguläre Randpunkte beim verallgemeinerten Dirichletschen Problem, Math. Zeit., 39, 532-559, (1935). Zbl0010.35603MR1545516JFM61.0531.02
  4. [4] C.B. Morrey: second Order Elliptic Equations in Several Variables and Hölder Continuity, Math. Zeitschrift, 72, 146-164, (1959). Zbl0094.07802MR120446
  5. [5] R. Courant, D. Hilbert: Methoden der mathematischen Physik, Springer (1931). Zbl0001.00501JFM57.0245.01
  6. [6] L. Nirenberg: Remarks on Strongly Elliptic Partial Differential Equations. Comm. on pure and appl. math. vol.VIII, (1955), 649-675 Zbl0067.07602MR75415
  7. [7] M. Nicolesco: Les fonctions polyharmoniques, Herrmann, (1936). Zbl0016.02505
  8. [8] E. Magenes, G. Stampacchia: I problemi al contorno per le equazioni differenziali di tipo ellittico. Annali della Scuola Normale Superiore di Pisa, Ser. III, vol. XII, Fasc. III, (1958), 247-358. Zbl0082.09601MR123818
  9. [9] G.A. Hardy. Y.E. Littlewood, G. Polya: Inequalities, (1934). 
  10. [10] F.E. Browder: Functional Analysis and Partial Differential Equations II, Mathematische Annalen145, (1962), 81-226. Zbl0103.31602MR136857

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.