Nash Manifolds

Masahiro Shiota

Publications mathématiques et informatique de Rennes (1986)

  • Volume: 1986, Issue: 4, page 1-28

How to cite

top

Shiota, Masahiro. "Nash Manifolds." Publications mathématiques et informatique de Rennes 1986.4 (1986): 1-28. <http://eudml.org/doc/273905>.

@article{Shiota1986,
author = {Shiota, Masahiro},
journal = {Publications mathématiques et informatique de Rennes},
keywords = {approximation; Nash manifolds},
language = {eng},
number = {4},
pages = {1-28},
publisher = {Département de Mathématiques et Informatique, Université de Rennes},
title = {Nash Manifolds},
url = {http://eudml.org/doc/273905},
volume = {1986},
year = {1986},
}

TY - JOUR
AU - Shiota, Masahiro
TI - Nash Manifolds
JO - Publications mathématiques et informatique de Rennes
PY - 1986
PB - Département de Mathématiques et Informatique, Université de Rennes
VL - 1986
IS - 4
SP - 1
EP - 28
LA - eng
KW - approximation; Nash manifolds
UR - http://eudml.org/doc/273905
ER -

References

top
  1. [1] M. Artin - B. Mazur, On periodic points, Ann. of.Math., 81 (1965), 82-99. Zbl0127.13401MR176482
  2. [2] R. Benedetti - A. Tognoli, On real algebraic vector bundles, Bull. Soc. Math., 104 (1980), 89-112. Zbl0421.58001MR560747
  3. [3] D.R. Chillingworth - J. Hubbard, A note on nonrigid Nash structures, Bull. Amer. Math. Soc., 77 (1971), 429-431. Zbl0211.26703MR276229
  4. [4] G. Efroymson, The extension theorem for Nash functions, Lecture Notes in Math., Springer, 959 (1982), 343-357. Zbl0516.14020MR683141
  5. [5] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, I-II, Ann. of Math., 79 (1964), 109-326. Zbl0122.38603MR199184
  6. [6] , H. Hironaka, Triangulations of algebraic sets, Proc. Sympos. Pure Math., 29, Amer. Math. Soc., Providence, R.I., 1975, 165-185. Zbl0332.14001MR374131
  7. [7] S. Liojasiewicz, Triangulations of semi-analytic sets, Ann. Scu. Norm. Sup. Pisa, 18 (1964), 449-474 Zbl0128.17101MR173265
  8. [8] S. Liojasiewicz, Ensembles semi-analytiques, IHES, 1965. 
  9. [9] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, 1966. Zbl0177.17902MR212575
  10. [10] B. Mazur, A note on some contractible 4-manifolds, Ann. of Math., 73 (1961), 221-228. Zbl0127.13604MR125574
  11. [11] J.W. Milnor, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math., 74 (1961), 575-590. Zbl0102.38103MR133127
  12. [12] J.W. Milnor, Lectures on the h-cobordism theorem, Princeton Univ. Press, 1965. Zbl0161.20302MR190942
  13. [13] T. Mostowski, Some properties of the ring of Nash functions, Ann. Scu. Norm. Sup. Pisa, III2 (1976), 245-266. Zbl0335.14001MR412180
  14. [14] J.F. Nash, Real algebraic manifolds, Ann. of Math., 56 (1952), 405-421. Zbl0048.38501MR50928
  15. [15] R. Palais, Equivariant real algebraic differential topology, Part 1, Smoothness categories and Nash manifolds, Notes Brondeis Univ., 1972. Zbl0281.57015
  16. [16] D. Pecker, On Efroymson's extension theorem for Nash functions, J. Pure Appl. Algebra, 37 (1985), 193-203. Zbl0581.14016MR796409
  17. [17] J.J. Risler, Sur l'anneau des fonctions de Nash globales, C.R.A.S., Paris, 276 (1973), 1513-1516. Zbl0256.13014MR318510
  18. [18] M. Shiota, Classification of Nash manifolds, Ann. Inst. Fourier, Grenoble, 33 (1983), 209-232. Zbl0495.58001MR723954
  19. [19] M. Shiota, Piecewise linearization of real analytic functions, Publ. RIMS, Kyoto Univ., 20 (1984), 727-792. Zbl0568.58004MR762952
  20. [20] M. Shiota, Approximation theorems for Nash mappings and Nash manifolds, Trans. Amer. Math. Soc., to appear. Zbl0601.58005MR814925
  21. [21] M. Shiota, Abstract Nash manifolds, Proc. Amer, Math. Soc.95 (1985), to appear. Zbl0594.58006MR813829
  22. [22] M. Shiota, Extension de fonctions de Nash C ω , to appear. Zbl0612.58001MR830284
  23. [23] M. Shiota - M. Yokoi, Triangulations of subanalytic sets and locally subanalytic manifolds, Trans. Amer. Math. Soc., 286 (1984), 727-750. Zbl0527.57014MR760983

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.