Pointwise convergence of singular convolution integrals

Jaak Peetre

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1966)

  • Volume: 20, Issue: 1, page 45-61
  • ISSN: 0391-173X

How to cite

top

Peetre, Jaak. "Pointwise convergence of singular convolution integrals." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.1 (1966): 45-61. <http://eudml.org/doc/83377>.

@article{Peetre1966,
author = {Peetre, Jaak},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {integral equations, integral transforms},
language = {eng},
number = {1},
pages = {45-61},
publisher = {Scuola normale superiore},
title = {Pointwise convergence of singular convolution integrals},
url = {http://eudml.org/doc/83377},
volume = {20},
year = {1966},
}

TY - JOUR
AU - Peetre, Jaak
TI - Pointwise convergence of singular convolution integrals
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1966
PB - Scuola normale superiore
VL - 20
IS - 1
SP - 45
EP - 61
LA - eng
KW - integral equations, integral transforms
UR - http://eudml.org/doc/83377
ER -

References

top
  1. [1] G. Alexits, Konvergenzprobleme der Orthogonalreihen. Berlin, 1960, Zbl0097.27702MR162091
  2. [2] A. Benedek - A.P. Calderón - R. Panzone, Convolution operators on Banach space valued functions. Proc. Amer. Math. Soc.48 (1962), 356-365. Zbl0103.33402MR133653
  3. [3] A.P. Calderón - A. Zygmund, On the existence of certain singular integrals. Acta Math.88 (1952), 85-139. Zbl0047.10201MR52553
  4. [4] A.P. Calderón - A. Zygmund, On singular integrals. Amer. J. Math.78 (1956), 289-309. Zbl0072.11501MR84633
  5. [5] M. Cotlar, Condiciones de continuidad de operadores potentiales y de Hilbert. Cursos y seminarios de matemática, Fasciculo 2, Universidade de Buenos Aires, 1959. Zbl0094.10101MR116190
  6. [6] M. Cotlar, A unified theory of Hilbert transforms and ergodic theorems. Revista Mat. Cuyana1 (1955), 105-167. Zbl0071.33402MR84632
  7. [7] L. Hörmander, Estimates for translation invariant operaters in Lp spaces. Acta. Math.104 (1960), 93-140. Zbl0093.11402MR121655
  8. [8] W. Littman, Multipliers in Lp and interpolation. Bull. Amer. Math. Soc.77 (1965), 764-766. Zbl0156.36504MR179544
  9. [9] L. Loomis, A note on the Hilbert transform. Bull. Amer. Math. Soc.52 (1946), 1082-1086. Zbl0063.03630MR19155
  10. [10] S.G. Michlin, On the multipliers of Fourier integrals. Dokl. Akad. Nauk. SSSR109 (1956), 701-703. (Russian.) Zbl0073.08402MR80799
  11. [11] S.G. Michlin, Fourier integrals and multiple singular integrals. Vestnik Leningrad. Univ. Ser. Mat. Mech. Astr.12 (1957), 143-155. (Russian) Zbl0092.31701MR88603
  12. [12] R. O' Neil - G. Weiss, The Hilbert transform, and rearrangement of functions. Studia Math.23 (1963), 189-198. Zbl0118.09901MR160084
  13. [13] J. Peetre, Espaces d'interpolation, généralisations, applications, Rend. Sem. Mat. Fis. Milano34 (1964), 133-164. Zbl0151.17902MR172107
  14. [14] J. Peetre, Applications de la théorie des espaces d'interpolation dans l'analyse harmonique. To appear. in Riceeche Mat. Zbl0154.15302
  15. [15] J. Peetre, Espaces d'interpolation et théorème de Soboleff. To appear in Ann. Inst. Fourien. Zbl0151.17903
  16. [16] J. Sckw Artz, A remark on inequalities of Calderòn - Zygmund type for vector-valued functions. Comm. Pure Appl. Math.14 (1961), 785-799. Zbl0106.08104MR143031
  17. [17] E.M. Stein. G. Weiss, An extension of a theorem of Marcinkiewicz and some of its applications. J. Math. Mech.8 (1959), 263-284. Zbl0084.10801MR107163
  18. [18] G. Weiss, Analisis armonico en varias variables. Teoria de los espacios Hp Cursos y seminarios de matemátua, Fasciculo 9, Universidade de Buenos Aires, 1960. Zbl0100.10501MR139902
  19. [19] A. Zygmund, Trigonometrical series. Cambridge, 1959. 
  20. [20] A. Zygmund, On singular integrals. Rend. Mat.16 (1957), 468-505. Zbl0088.08302MR96088

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.