Pointwise convergence of singular convolution integrals

Jaak Peetre

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1966)

  • Volume: 20, Issue: 1, page 45-61
  • ISSN: 0391-173X

How to cite

top

Peetre, Jaak. "Pointwise convergence of singular convolution integrals." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.1 (1966): 45-61. <http://eudml.org/doc/83377>.

@article{Peetre1966,
author = {Peetre, Jaak},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {integral equations, integral transforms},
language = {eng},
number = {1},
pages = {45-61},
publisher = {Scuola normale superiore},
title = {Pointwise convergence of singular convolution integrals},
url = {http://eudml.org/doc/83377},
volume = {20},
year = {1966},
}

TY - JOUR
AU - Peetre, Jaak
TI - Pointwise convergence of singular convolution integrals
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1966
PB - Scuola normale superiore
VL - 20
IS - 1
SP - 45
EP - 61
LA - eng
KW - integral equations, integral transforms
UR - http://eudml.org/doc/83377
ER -

References

top
  1. [1] G. Alexits, Konvergenzprobleme der Orthogonalreihen. Berlin, 1960, Zbl0097.27702MR162091
  2. [2] A. Benedek - A.P. Calderón - R. Panzone, Convolution operators on Banach space valued functions. Proc. Amer. Math. Soc.48 (1962), 356-365. Zbl0103.33402MR133653
  3. [3] A.P. Calderón - A. Zygmund, On the existence of certain singular integrals. Acta Math.88 (1952), 85-139. Zbl0047.10201MR52553
  4. [4] A.P. Calderón - A. Zygmund, On singular integrals. Amer. J. Math.78 (1956), 289-309. Zbl0072.11501MR84633
  5. [5] M. Cotlar, Condiciones de continuidad de operadores potentiales y de Hilbert. Cursos y seminarios de matemática, Fasciculo 2, Universidade de Buenos Aires, 1959. Zbl0094.10101MR116190
  6. [6] M. Cotlar, A unified theory of Hilbert transforms and ergodic theorems. Revista Mat. Cuyana1 (1955), 105-167. Zbl0071.33402MR84632
  7. [7] L. Hörmander, Estimates for translation invariant operaters in Lp spaces. Acta. Math.104 (1960), 93-140. Zbl0093.11402MR121655
  8. [8] W. Littman, Multipliers in Lp and interpolation. Bull. Amer. Math. Soc.77 (1965), 764-766. Zbl0156.36504MR179544
  9. [9] L. Loomis, A note on the Hilbert transform. Bull. Amer. Math. Soc.52 (1946), 1082-1086. Zbl0063.03630MR19155
  10. [10] S.G. Michlin, On the multipliers of Fourier integrals. Dokl. Akad. Nauk. SSSR109 (1956), 701-703. (Russian.) Zbl0073.08402MR80799
  11. [11] S.G. Michlin, Fourier integrals and multiple singular integrals. Vestnik Leningrad. Univ. Ser. Mat. Mech. Astr.12 (1957), 143-155. (Russian) Zbl0092.31701MR88603
  12. [12] R. O' Neil - G. Weiss, The Hilbert transform, and rearrangement of functions. Studia Math.23 (1963), 189-198. Zbl0118.09901MR160084
  13. [13] J. Peetre, Espaces d'interpolation, généralisations, applications, Rend. Sem. Mat. Fis. Milano34 (1964), 133-164. Zbl0151.17902MR172107
  14. [14] J. Peetre, Applications de la théorie des espaces d'interpolation dans l'analyse harmonique. To appear. in Riceeche Mat. Zbl0154.15302
  15. [15] J. Peetre, Espaces d'interpolation et théorème de Soboleff. To appear in Ann. Inst. Fourien. Zbl0151.17903
  16. [16] J. Sckw Artz, A remark on inequalities of Calderòn - Zygmund type for vector-valued functions. Comm. Pure Appl. Math.14 (1961), 785-799. Zbl0106.08104MR143031
  17. [17] E.M. Stein. G. Weiss, An extension of a theorem of Marcinkiewicz and some of its applications. J. Math. Mech.8 (1959), 263-284. Zbl0084.10801MR107163
  18. [18] G. Weiss, Analisis armonico en varias variables. Teoria de los espacios Hp Cursos y seminarios de matemátua, Fasciculo 9, Universidade de Buenos Aires, 1960. Zbl0100.10501MR139902
  19. [19] A. Zygmund, Trigonometrical series. Cambridge, 1959. 
  20. [20] A. Zygmund, On singular integrals. Rend. Mat.16 (1957), 468-505. Zbl0088.08302MR96088

NotesEmbed ?

top

You must be logged in to post comments.