The stability of the boundary in a Stefan problem

J. R. Cannon; Jim Jr Douglas

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1967)

  • Volume: 21, Issue: 1, page 83-91
  • ISSN: 0391-173X

How to cite

top

Cannon, J. R., and Douglas, Jim Jr. "The stability of the boundary in a Stefan problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.1 (1967): 83-91. <http://eudml.org/doc/83412>.

@article{Cannon1967,
author = {Cannon, J. R., Douglas, Jim Jr},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {partial differential equations},
language = {eng},
number = {1},
pages = {83-91},
publisher = {Scuola normale superiore},
title = {The stability of the boundary in a Stefan problem},
url = {http://eudml.org/doc/83412},
volume = {21},
year = {1967},
}

TY - JOUR
AU - Cannon, J. R.
AU - Douglas, Jim Jr
TI - The stability of the boundary in a Stefan problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1967
PB - Scuola normale superiore
VL - 21
IS - 1
SP - 83
EP - 91
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/83412
ER -

References

top
  1. 1 Cannon, J.R., A priori estimate for continuation of the solution of the heat equation in the space variable, Annali di Matematica, ser. 4, 65 (1964) 377-387. Zbl0131.32202MR168936
  2. 2 Douglas, J., A uniqueness theorem for the solution of a Stefan problem, Proc. Amer. Math. Soc.8 (1957) 402-408. Zbl0077.40504MR92086
  3. 3 Douglas, J., and Gallie, T.M., On the numerical soliation of a parabolic differential equation subject to a moving boundary condition, Duke Math. J.22 (1955) 557-572. Zbl0066.10503MR78755
  4. 4 Friedman, A., Free boundary problems for parabolic equations. I, Melting of solids, J. Math. Mech.8 (1959) 499-518. Zbl0089.07801MR144078
  5. 5 Friedman, A., Remarks on Stefan-type free boundary problems for parabolic eqications, J. Math. Mech.9 (1960) 885-903. Zbl0099.07902MR144081
  6. 6 Friedman, A., Partial Differential Equations of Parabolic Type, Prentice-Hall. Inc., Englewood Cliffs, N. J., 1964. Zbl0144.34903MR181836
  7. 7 Kyner, W.T., An existence and uniqueness theorem for a non-linear Stefan problem, J. Math. Mech.8 (1959) 483-498. Zbl0087.09301MR144082

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.