A maximum principle for nonlinear parabolic equations

D. G. Aronson; James Serrin

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1967)

  • Volume: 21, Issue: 2, page 291-305
  • ISSN: 0391-173X

How to cite

top

Aronson, D. G., and Serrin, James. "A maximum principle for nonlinear parabolic equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.2 (1967): 291-305. <http://eudml.org/doc/83424>.

@article{Aronson1967,
author = {Aronson, D. G., Serrin, James},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {partial differential equations},
language = {eng},
number = {2},
pages = {291-305},
publisher = {Scuola normale superiore},
title = {A maximum principle for nonlinear parabolic equations},
url = {http://eudml.org/doc/83424},
volume = {21},
year = {1967},
}

TY - JOUR
AU - Aronson, D. G.
AU - Serrin, James
TI - A maximum principle for nonlinear parabolic equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1967
PB - Scuola normale superiore
VL - 21
IS - 2
SP - 291
EP - 305
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/83424
ER -

References

top
  1. [1]. D.G. AronsonSERRIN, Local behavior of solictions of quasi-linear parabotic equations, Archive Rational Mechanics and Analysis, 25 (1967), 81-122. Zbl0154.12001MR244638
  2. [2] A.B. Ivanov, O.A. Ladyzhenskaya, L.A. Treskunov, and N.N. Uralceva, Certain properties of generalized sotutions of Second order parabolic equations, Doklady Akad. Nauk SSSR.168 (1966), pp. 17-20. Zbl0152.10704MR196285
  3. [3] O.A. Ladyzhenskaya and N.N. Uralceva, A boundary value problem for linear and quasilinear parabolic equations I, Izvestija Akademii Nauk SSSR, Serija Matemati ceskaya, 26 (1962), 5-52; II, 26 (1962) 753-780. Zbl0149.31301
  4. [4] J. Moser, A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations, Communications on Pure and Applied Mathematics, 13 (1960) 457-468. Zbl0111.09301MR170091
  5. [5] J. Moser, On Harnack's theorem for elliptic differential equationsCommunications on Pure and Applied Mathematics, 14 (1961), 577-591. Zbl0111.09302MR159138
  6. [6] J. Moser, A Harnack inequality for parabolic differential equations, Communications on Pure and Applied Mathematics, 17 (1964), 101-134. Zbl0149.06902MR159139
  7. [7] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Mathematica, 111 (1964), 247-302. Zbl0128.09101MR170096
  8. [8] J. Serrin, Isolated singularities of solutions of quasi-linear equations, Acta Mathematic a113 (1965), 219-240. Zbl0173.39202MR176219
  9. [9] W. Walter, Differential und Integral Ungleichungen, Springer-Verlag, Berlin, 1964. MR172076

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.