Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients
Anna Doubova; A. Osses; J.-P. Puel
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 8, page 621-661
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- S. Anita and V. Barbu, Null controllability of nonlinear convective heat equation. ESAIM: COCV5 (2000) 157-173.
- D.G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations. Arch. Rational Mech. Anal.25 (1967) 81-122.
- D.G. Aronson and J. Serrin, A maximum principle for nonlinear parabolic equations. Ann. Scuola Norm. Sup. Pisa3 (1967) 291-305
- J.P. Aubin, L'analyse non linéaire et ses motivations économiques. Masson (1984).
- V. Barbu, Exact controllability of the superlinear heat equation. Appl. Math. Optim.42 (2000) 73-89.
- T. Cazenave and A. Haraux, Introduction aux problèmes d'évolution semi-linéaires. Ellipses, Paris, Mathématiques & Applications (1990).
- S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end. Indiana Univ. Math. J.44 (1995) 545-573.
- A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic system with a nonlinear term involving the state and the gradient. SIAM: SICON (to appear).
- C. Fabre, J.-P. Puel and E. Zuazua, (a) Approximate controllability for the semilinear heat equation. C. R. Acad. Sci. Paris Sér. I Math.315 (1992) 807-812; (b) Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh Sect. A125 (1995) 31-61.
- C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability for the linear heat equation with controls of minimal L∞ norm. C. R. Acad. Sci. Paris Sér. I Math.316 (1993) 679-684.
- E. Fernández-Cara, Null controllability of the semilinear heat equation. ESAIM: COCV2 (1997) 87-107.
- E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case. Adv. Differential Equations5 (2000) 465-514.
- E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 583-616.
- E. Fernández-Cara and E. Zuazua, On the null controllability of the one-dimensional heat equation with BV coefficients (to appear).
- A. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations. Seoul National University, Korea, Lecture Notes34 (1996).
- O.Yu. Imanuvilov, Controllability of parabolic equations. Mat. Sb.186 (1995) 102-132.
- O.Yu. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications. Lecture Notes in Pure Appl. Math.218 (2001) 113-137.
- O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Uraltzeva, Linear and Quasilinear Equations of Parabolic Type. Nauka, Moskow (1967).
- A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983).
- D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math.52 (1973) 189-211.
- F.B. Weissler, Local existence and nonexistence for semilinear parabolic equations in Lp. Indiana Univ. Math. J.29 (1980) 79-102.
- F.B. Weissler, Semilinear evolution equations in Banach spaces. J. Funct. Anal.32 (1979) 277-296.
- E. Zuazua, Exact boundary controllability for the semilinear wave equation, in Nonlinear Partial Differential Equations and their Applications, Vol. X, edited by H. Brezis and J.-L. Lions. Pitman (1991) 357-391.
- E. Zuazua, Finite dimensional controllability for the semilinear heat equations. J. Math. Pures76 (1997) 570-594.
- E. Zuazua, Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities. Control and Cybernetics28 (1999) 665-683.