Fractional powers of elliptic differential operators

Tamar Burak

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1968)

  • Volume: 22, Issue: 1, page 113-132
  • ISSN: 0391-173X

How to cite

top

Burak, Tamar. "Fractional powers of elliptic differential operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.1 (1968): 113-132. <http://eudml.org/doc/83448>.

@article{Burak1968,
author = {Burak, Tamar},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {partial differential equations},
language = {eng},
number = {1},
pages = {113-132},
publisher = {Scuola normale superiore},
title = {Fractional powers of elliptic differential operators},
url = {http://eudml.org/doc/83448},
volume = {22},
year = {1968},
}

TY - JOUR
AU - Burak, Tamar
TI - Fractional powers of elliptic differential operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1968
PB - Scuola normale superiore
VL - 22
IS - 1
SP - 113
EP - 132
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/83448
ER -

References

top
  1. [1] S. Agmon: On the eigenfunctions and on the eigenvalues of elliptic boundary value problems, Comm. Pure Appl. Math. Vol. 15, pp. 119-147 (1962). Zbl0109.32701MR147774
  2. [2] S. Agmon: Lectures on elliptic boundary value problems. Van-Nostrand Mathematical Studies. Princeton N. J.1965. Zbl0142.37401MR178246
  3. [3] S. Agmon: On kernels eigenvalues and eigenfunctions of operators related to elliptic problems. Comm. Pure Appl. Math. Vol. 18, pp. 627-663 (1965). Zbl0151.20203MR198287
  4. [4] T. Burak: Pseudodifferential operators depending on a parameter and fractional powers of elliptic differential operators. Thesis. Hebrew University of Jerusalem. (1967). 
  5. Dunford-Schwartz: [5] Linear operators II. 
  6. [6] T. Kato: Note on fractional powers of linear operators. Proc. Japan Acad. Vol. 36, pp. 94-96 (1960). Zbl0097.31802MR121666
  7. [7] J.J. Kohn and L. Nirenberg: An algebra of pseudodifferential operators. Comm. Pure Appl. Math. Vol. 18, pp. 267-305 (1965). Zbl0171.35101
  8. [8] T. Kotaké and M.S. Narasimhan: Regutarity theorems for fractional powers of a linear elliptic operator. Bull. Soc. Math. France. Vol. 90, pp. 449-471 (1962). Zbl0104.32503MR149329
  9. [9] S. Minakshundaram and A. Pleijel: Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds. Canadian Journal of Mathematics. Vol. I, pp. 242-256 (1949). Zbl0041.42701MR31145
  10. [10] R.S. Palais: Seminar on the Atiyah-Singer index theorem. Annals of Mathematics. Studies No. 5.7. 
  11. [11] R.T. Seeley: The powers As of an elliptic operator A. To be published. Zbl0159.15504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.