Antilocality of complex powers of elliptic differential operators with analytic coefficients
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1982)
- Volume: 9, Issue: 1, page 1-26
- ISSN: 0391-173X
Access Full Article
topHow to cite
topLiess, Otto. "Antilocality of complex powers of elliptic differential operators with analytic coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 9.1 (1982): 1-26. <http://eudml.org/doc/83875>.
@article{Liess1982,
author = {Liess, Otto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {complex powers; antilocal; second order elliptic operators; elliptic operators of arbitrary order; real analytic coefficients},
language = {eng},
number = {1},
pages = {1-26},
publisher = {Scuola normale superiore},
title = {Antilocality of complex powers of elliptic differential operators with analytic coefficients},
url = {http://eudml.org/doc/83875},
volume = {9},
year = {1982},
}
TY - JOUR
AU - Liess, Otto
TI - Antilocality of complex powers of elliptic differential operators with analytic coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1982
PB - Scuola normale superiore
VL - 9
IS - 1
SP - 1
EP - 26
LA - eng
KW - complex powers; antilocal; second order elliptic operators; elliptic operators of arbitrary order; real analytic coefficients
UR - http://eudml.org/doc/83875
ER -
References
top- [1] J.M. Bony, Propagation des singularités différentiables pour une classe d'opérateurs differéntiels à coefficients analytiques, Asterisque, 34-35 (1976), pp. 43-91. Zbl0344.35075MR510214
- [2] L. Boutet De Monvel, Opérateurs pseudodifférentiels analytiques et opérateurs d'ordre infini, Ann. Inst. Fourier, Grenoble, 22 (1972), pp. 229-268. Zbl0235.47029MR341189
- [3] T. Burak, Fractional powers of elliptic differential operators, Ann. Scuola Norm. Sup. Pisa, 22 (1968), pp. 113-132. Zbl0159.15601MR236767
- [4] R.W. Goodman - I.E. Segal, Antilocality of certain Lorentz invariant operators, J. Math. Mech., 14 (1965), pp. 629-638. Zbl0151.44201MR180176
- [5] L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., 24 (1971), pp. 671-703. Zbl0226.35019MR294849
- [6] L. Hörmander, Spectral analysis of singularities of solutions of linear partial differential equations, Lectures at the University of Stockholm, September 1974. MR547014
- [7] O. Liess, Analytic pseudodiffereiatial operators and the analytic wave front set, to appear.
- [8] K. Masuda, Antilocality of the one-half power of elliptic differential operators, Publ. Res. Inst. Math. Sci., 8 (1972), pp. 207-210. Zbl0245.35026MR331120
- [9] M. Nagase - K. Shinkai, Complex powers of nonelliptic operators, Proe. Japan Acad., XLVI:7, pp. 779-784. Zbl0224.47026
- [10] H. Reeh - S. Schlieder, Bemerkungen zur Unitärequivalenz von Lorentzinvarianten Feldern, Nuovo Cimento, 22 (1961), pp. 1051-1068. Zbl0101.22402MR137513
- [11] J. Riordan, An introduction to combinatorial analysis, John Wiley & Sons, 1958. Zbl0078.00805MR96594
- [12] M. Sato, Hyperfunctions and partial differential equations, Conf. on Functional Analysis and Related Topics, Univ. of Tokyo Press (1969), pp. 91-94. Zbl0208.35801
- [13] M. Sato - T. Kawai - M. Kashiwara, Hyperfunctions and pseudodifferential equations, Lecture Notes in Math., 287 (1973), pp. 265-529. Zbl0277.46039MR420735
- [14] R.T. Seeley, Complex powers of an elliptic operator, Proc. Symp. on Singular Integrals, Amer. Math. Soc., 10 (1967), pp. 288-307. Zbl0159.15504MR237943
- [15] R. Strichartz, A functional calculus for elliptic pseudodifferential operators, Amer. J. Math., 94 (1972), pp. 711-722. Zbl0246.35082MR310713
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.