Antilocality of complex powers of elliptic differential operators with analytic coefficients

Otto Liess

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1982)

  • Volume: 9, Issue: 1, page 1-26
  • ISSN: 0391-173X

How to cite

top

Liess, Otto. "Antilocality of complex powers of elliptic differential operators with analytic coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 9.1 (1982): 1-26. <http://eudml.org/doc/83875>.

@article{Liess1982,
author = {Liess, Otto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {complex powers; antilocal; second order elliptic operators; elliptic operators of arbitrary order; real analytic coefficients},
language = {eng},
number = {1},
pages = {1-26},
publisher = {Scuola normale superiore},
title = {Antilocality of complex powers of elliptic differential operators with analytic coefficients},
url = {http://eudml.org/doc/83875},
volume = {9},
year = {1982},
}

TY - JOUR
AU - Liess, Otto
TI - Antilocality of complex powers of elliptic differential operators with analytic coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1982
PB - Scuola normale superiore
VL - 9
IS - 1
SP - 1
EP - 26
LA - eng
KW - complex powers; antilocal; second order elliptic operators; elliptic operators of arbitrary order; real analytic coefficients
UR - http://eudml.org/doc/83875
ER -

References

top
  1. [1] J.M. Bony, Propagation des singularités différentiables pour une classe d'opérateurs differéntiels à coefficients analytiques, Asterisque, 34-35 (1976), pp. 43-91. Zbl0344.35075MR510214
  2. [2] L. Boutet De Monvel, Opérateurs pseudodifférentiels analytiques et opérateurs d'ordre infini, Ann. Inst. Fourier, Grenoble, 22 (1972), pp. 229-268. Zbl0235.47029MR341189
  3. [3] T. Burak, Fractional powers of elliptic differential operators, Ann. Scuola Norm. Sup. Pisa, 22 (1968), pp. 113-132. Zbl0159.15601MR236767
  4. [4] R.W. Goodman - I.E. Segal, Antilocality of certain Lorentz invariant operators, J. Math. Mech., 14 (1965), pp. 629-638. Zbl0151.44201MR180176
  5. [5] L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., 24 (1971), pp. 671-703. Zbl0226.35019MR294849
  6. [6] L. Hörmander, Spectral analysis of singularities of solutions of linear partial differential equations, Lectures at the University of Stockholm, September 1974. MR547014
  7. [7] O. Liess, Analytic pseudodiffereiatial operators and the analytic wave front set, to appear. 
  8. [8] K. Masuda, Antilocality of the one-half power of elliptic differential operators, Publ. Res. Inst. Math. Sci., 8 (1972), pp. 207-210. Zbl0245.35026MR331120
  9. [9] M. Nagase - K. Shinkai, Complex powers of nonelliptic operators, Proe. Japan Acad., XLVI:7, pp. 779-784. Zbl0224.47026
  10. [10] H. Reeh - S. Schlieder, Bemerkungen zur Unitärequivalenz von Lorentzinvarianten Feldern, Nuovo Cimento, 22 (1961), pp. 1051-1068. Zbl0101.22402MR137513
  11. [11] J. Riordan, An introduction to combinatorial analysis, John Wiley & Sons, 1958. Zbl0078.00805MR96594
  12. [12] M. Sato, Hyperfunctions and partial differential equations, Conf. on Functional Analysis and Related Topics, Univ. of Tokyo Press (1969), pp. 91-94. Zbl0208.35801
  13. [13] M. Sato - T. Kawai - M. Kashiwara, Hyperfunctions and pseudodifferential equations, Lecture Notes in Math., 287 (1973), pp. 265-529. Zbl0277.46039MR420735
  14. [14] R.T. Seeley, Complex powers of an elliptic operator, Proc. Symp. on Singular Integrals, Amer. Math. Soc., 10 (1967), pp. 288-307. Zbl0159.15504MR237943
  15. [15] R. Strichartz, A functional calculus for elliptic pseudodifferential operators, Amer. J. Math., 94 (1972), pp. 711-722. Zbl0246.35082MR310713

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.