The generalized Weierstrass-type integral
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1968)
- Volume: 22, Issue: 2, page 163-192
- ISSN: 0391-173X
Access Full Article
topHow to cite
topWarner, Garth. "The generalized Weierstrass-type integral $\int f ( \zeta , \varphi )$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.2 (1968): 163-192. <http://eudml.org/doc/83455>.
@article{Warner1968,
author = {Warner, Garth},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {differentiation and integration, measure theory},
language = {eng},
number = {2},
pages = {163-192},
publisher = {Scuola normale superiore},
title = {The generalized Weierstrass-type integral $\int f ( \zeta , \varphi )$},
url = {http://eudml.org/doc/83455},
volume = {22},
year = {1968},
}
TY - JOUR
AU - Warner, Garth
TI - The generalized Weierstrass-type integral $\int f ( \zeta , \varphi )$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1968
PB - Scuola normale superiore
VL - 22
IS - 2
SP - 163
EP - 192
LA - eng
KW - differentiation and integration, measure theory
UR - http://eudml.org/doc/83455
ER -
References
top- [1] L. Cksari.Sui fondamenti geometrici dell'integrale classico per l'area delle superficie in forma parametrica. Memorie Reale Accademia d'Italia. vol.13 (1943), pp. 1323-1481. Zbl0061.11001MR17355
- [2] L. Cesari.La nozione di integrale sopra una superficie in forma parametrica.Ann. Scuola Norm. Sup. Pisa (2). vol. 13 (1946). pp. 1-44. Zbl0029.29102
- [3] L. Cesari.Sopra un teorema di approssimazione per le superficie continue in forma parametrica. Accad. Nazionale Dei Lincei vol.4 (1948), pp. 33-39. Zbl0030.24403MR27049
- [4] L. Cesari.Surface area. Princeton University Press (1956). Zbl0073.04101MR74500
- [5] L. Cesari.Qaasi additive set functions and the concept of integral over a variety. Traits. Amer. Math. Soc. vol. 102 (1962), pp. 94-113. Zbl0115.26902MR142723
- [6] L. Cesari.Extension problem for quasi additive set functions Randon-Nikodym derivatives. Trans. Amer. Math. Soc. vol. 102 (1962), pp. 114-146. Zbl0115.27001MR142724
- [7] T. Nishiura.Integrals over a product variety and Fubini theorem. Rend. Palermo. vol. 14 (1965), pp. 207-236. Zbl0154.05302MR197685
- [8] A. Stoddart.Integrale of the Calculus of Variations. Thesis, University of Michigan (1964). Zbl0141.44904MR181920
- [9] L.H. Turner.The Direct Method in the Calculus of Variations. Thesis, Purdue University (1957).
- [10] L.H. Turner.An invariant property of Cesari's surface integral. Proc. Amer. Math. Soo. vol. 9 (1958), pp. 920-925. Zbl0090.03504MR103260
- [11] L.H. Turner.Sufficient conditions for semi-continuous surface integrals. Mich. Math. J. vol. 10 (1963), pp. 193- 206. Zbl0135.32501MR153820
- [12] G. Warner.The Burkill-Cesari integral. Duke Mathematical Journal. vol.35 (1968), pp. 61-78. Zbl0165.06702MR219690
Citations in EuDML Documents
top- J. C. Breckenridge, Cesari-Weierstrass surface integrals and lower -area
- Primo Brandi, Anna Salvadori, On a class of variational integrals over BV varieties
- Primo Brandi, Anna Salvadori, On a class of variational integrals over BV varieties
- Loris Faina, The parametric Weierstrass integral over a BV curve as a length functional
- L. Cesari, P. Brandi, A. Salvadori, Discontinuous solutions in problems of optimization
- Primo Brandi, Anna Salvadori, Martingale ed integrale alla Burkill-Cesari
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.