The generalized Weierstrass-type integral f ( ζ , ϕ )

Garth Warner

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1968)

  • Volume: 22, Issue: 2, page 163-192
  • ISSN: 0391-173X

How to cite

top

Warner, Garth. "The generalized Weierstrass-type integral $\int f ( \zeta , \varphi )$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.2 (1968): 163-192. <http://eudml.org/doc/83455>.

@article{Warner1968,
author = {Warner, Garth},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {differentiation and integration, measure theory},
language = {eng},
number = {2},
pages = {163-192},
publisher = {Scuola normale superiore},
title = {The generalized Weierstrass-type integral $\int f ( \zeta , \varphi )$},
url = {http://eudml.org/doc/83455},
volume = {22},
year = {1968},
}

TY - JOUR
AU - Warner, Garth
TI - The generalized Weierstrass-type integral $\int f ( \zeta , \varphi )$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1968
PB - Scuola normale superiore
VL - 22
IS - 2
SP - 163
EP - 192
LA - eng
KW - differentiation and integration, measure theory
UR - http://eudml.org/doc/83455
ER -

References

top
  1. [1] L. Cksari.Sui fondamenti geometrici dell'integrale classico per l'area delle superficie in forma parametrica. Memorie Reale Accademia d'Italia. vol.13 (1943), pp. 1323-1481. Zbl0061.11001MR17355
  2. [2] L. Cesari.La nozione di integrale sopra una superficie in forma parametrica.Ann. Scuola Norm. Sup. Pisa (2). vol. 13 (1946). pp. 1-44. Zbl0029.29102
  3. [3] L. Cesari.Sopra un teorema di approssimazione per le superficie continue in forma parametrica. Accad. Nazionale Dei Lincei vol.4 (1948), pp. 33-39. Zbl0030.24403MR27049
  4. [4] L. Cesari.Surface area. Princeton University Press (1956). Zbl0073.04101MR74500
  5. [5] L. Cesari.Qaasi additive set functions and the concept of integral over a variety. Traits. Amer. Math. Soc. vol. 102 (1962), pp. 94-113. Zbl0115.26902MR142723
  6. [6] L. Cesari.Extension problem for quasi additive set functions Randon-Nikodym derivatives. Trans. Amer. Math. Soc. vol. 102 (1962), pp. 114-146. Zbl0115.27001MR142724
  7. [7] T. Nishiura.Integrals over a product variety and Fubini theorem. Rend. Palermo. vol. 14 (1965), pp. 207-236. Zbl0154.05302MR197685
  8. [8] A. Stoddart.Integrale of the Calculus of Variations. Thesis, University of Michigan (1964). Zbl0141.44904MR181920
  9. [9] L.H. Turner.The Direct Method in the Calculus of Variations. Thesis, Purdue University (1957). 
  10. [10] L.H. Turner.An invariant property of Cesari's surface integral. Proc. Amer. Math. Soo. vol. 9 (1958), pp. 920-925. Zbl0090.03504MR103260
  11. [11] L.H. Turner.Sufficient conditions for semi-continuous surface integrals. Mich. Math. J. vol. 10 (1963), pp. 193- 206. Zbl0135.32501MR153820
  12. [12] G. Warner.The Burkill-Cesari integral. Duke Mathematical Journal. vol.35 (1968), pp. 61-78. Zbl0165.06702MR219690

Citations in EuDML Documents

top
  1. J. C. Breckenridge, Cesari-Weierstrass surface integrals and lower k -area
  2. Primo Brandi, Anna Salvadori, On a class of variational integrals over BV varieties
  3. Primo Brandi, Anna Salvadori, On a class of variational integrals over BV varieties
  4. Loris Faina, The parametric Weierstrass integral over a BV curve as a length functional
  5. L. Cesari, P. Brandi, A. Salvadori, Discontinuous solutions in problems of optimization
  6. Primo Brandi, Anna Salvadori, Martingale ed integrale alla Burkill-Cesari

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.