The generalized Weierstrass-type integral f ( ζ , ϕ )

Garth Warner

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1968)

  • Volume: 22, Issue: 2, page 163-192
  • ISSN: 0391-173X

How to cite

top

Warner, Garth. "The generalized Weierstrass-type integral $\int f ( \zeta , \varphi )$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.2 (1968): 163-192. <http://eudml.org/doc/83455>.

@article{Warner1968,
author = {Warner, Garth},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {differentiation and integration, measure theory},
language = {eng},
number = {2},
pages = {163-192},
publisher = {Scuola normale superiore},
title = {The generalized Weierstrass-type integral $\int f ( \zeta , \varphi )$},
url = {http://eudml.org/doc/83455},
volume = {22},
year = {1968},
}

TY - JOUR
AU - Warner, Garth
TI - The generalized Weierstrass-type integral $\int f ( \zeta , \varphi )$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1968
PB - Scuola normale superiore
VL - 22
IS - 2
SP - 163
EP - 192
LA - eng
KW - differentiation and integration, measure theory
UR - http://eudml.org/doc/83455
ER -

References

top
  1. [1] L. Cksari.Sui fondamenti geometrici dell'integrale classico per l'area delle superficie in forma parametrica. Memorie Reale Accademia d'Italia. vol.13 (1943), pp. 1323-1481. Zbl0061.11001MR17355
  2. [2] L. Cesari.La nozione di integrale sopra una superficie in forma parametrica.Ann. Scuola Norm. Sup. Pisa (2). vol. 13 (1946). pp. 1-44. Zbl0029.29102
  3. [3] L. Cesari.Sopra un teorema di approssimazione per le superficie continue in forma parametrica. Accad. Nazionale Dei Lincei vol.4 (1948), pp. 33-39. Zbl0030.24403MR27049
  4. [4] L. Cesari.Surface area. Princeton University Press (1956). Zbl0073.04101MR74500
  5. [5] L. Cesari.Qaasi additive set functions and the concept of integral over a variety. Traits. Amer. Math. Soc. vol. 102 (1962), pp. 94-113. Zbl0115.26902MR142723
  6. [6] L. Cesari.Extension problem for quasi additive set functions Randon-Nikodym derivatives. Trans. Amer. Math. Soc. vol. 102 (1962), pp. 114-146. Zbl0115.27001MR142724
  7. [7] T. Nishiura.Integrals over a product variety and Fubini theorem. Rend. Palermo. vol. 14 (1965), pp. 207-236. Zbl0154.05302MR197685
  8. [8] A. Stoddart.Integrale of the Calculus of Variations. Thesis, University of Michigan (1964). Zbl0141.44904MR181920
  9. [9] L.H. Turner.The Direct Method in the Calculus of Variations. Thesis, Purdue University (1957). 
  10. [10] L.H. Turner.An invariant property of Cesari's surface integral. Proc. Amer. Math. Soo. vol. 9 (1958), pp. 920-925. Zbl0090.03504MR103260
  11. [11] L.H. Turner.Sufficient conditions for semi-continuous surface integrals. Mich. Math. J. vol. 10 (1963), pp. 193- 206. Zbl0135.32501MR153820
  12. [12] G. Warner.The Burkill-Cesari integral. Duke Mathematical Journal. vol.35 (1968), pp. 61-78. Zbl0165.06702MR219690

Citations in EuDML Documents

top
  1. J. C. Breckenridge, Cesari-Weierstrass surface integrals and lower k -area
  2. Primo Brandi, Anna Salvadori, On a class of variational integrals over BV varieties
  3. Primo Brandi, Anna Salvadori, On a class of variational integrals over BV varieties
  4. Loris Faina, The parametric Weierstrass integral over a BV curve as a length functional
  5. L. Cesari, P. Brandi, A. Salvadori, Discontinuous solutions in problems of optimization
  6. Primo Brandi, Anna Salvadori, Martingale ed integrale alla Burkill-Cesari

NotesEmbed ?

top

You must be logged in to post comments.