The parametric Weierstrass integral over a BV curve as a length functional

Loris Faina

Studia Mathematica (1998)

  • Volume: 127, Issue: 1, page 9-19
  • ISSN: 0039-3223

Abstract

top
The constructive definition of the Weierstrass integral through only one limit process over finite sums is often preferable to the more sophisticated definition of the Serrin integral, especially for approximation purposes. By proving that the Weierstrass integral over a BV curve is a length functional with respect to a suitable metric, we discover a further natural reason for studying the Weierstrass integral. This characterization was conjectured by Menger.

How to cite

top

Faina, Loris. "The parametric Weierstrass integral over a BV curve as a length functional." Studia Mathematica 127.1 (1998): 9-19. <http://eudml.org/doc/216462>.

@article{Faina1998,
abstract = {The constructive definition of the Weierstrass integral through only one limit process over finite sums is often preferable to the more sophisticated definition of the Serrin integral, especially for approximation purposes. By proving that the Weierstrass integral over a BV curve is a length functional with respect to a suitable metric, we discover a further natural reason for studying the Weierstrass integral. This characterization was conjectured by Menger.},
author = {Faina, Loris},
journal = {Studia Mathematica},
keywords = {generalized length; Weierstrass integral over a curve of bounded variation},
language = {eng},
number = {1},
pages = {9-19},
title = {The parametric Weierstrass integral over a BV curve as a length functional},
url = {http://eudml.org/doc/216462},
volume = {127},
year = {1998},
}

TY - JOUR
AU - Faina, Loris
TI - The parametric Weierstrass integral over a BV curve as a length functional
JO - Studia Mathematica
PY - 1998
VL - 127
IS - 1
SP - 9
EP - 19
AB - The constructive definition of the Weierstrass integral through only one limit process over finite sums is often preferable to the more sophisticated definition of the Serrin integral, especially for approximation purposes. By proving that the Weierstrass integral over a BV curve is a length functional with respect to a suitable metric, we discover a further natural reason for studying the Weierstrass integral. This characterization was conjectured by Menger.
LA - eng
KW - generalized length; Weierstrass integral over a curve of bounded variation
UR - http://eudml.org/doc/216462
ER -

References

top
  1. [1] M. Boni, Variazione generalizzata con peso e quasi additività, Atti Sem. Mat. Fis. Univ. Modena 25 (1976), 195-210. Zbl0407.26003
  2. [2] M. Boni and P. Brandi, Variazione, classica e generalizzata, con peso, ibid. 23 (1974), 1-22. Zbl0331.49006
  3. [3] P. Brandi and A. Salvadori, Sull'integrale debole alla Burkill-Cesari, ibid. 27, (1978), 14-38. 
  4. [4] P. Brandi and A. Salvadori, Martingale ed integrale alla Burkill-Cesari, Rend. Accad. Naz. Lincei 67 (1979), 197-203. 
  5. [5] P. Brandi and A. Salvadori, Sull'area generalizzata, Atti Sem. Mat. Fis. Univ. Modena 24 (1979), 33-62. Zbl0444.49037
  6. [6] P. Brandi and A. Salvadori, Un teorema di rappresentazione per l'integrale parametrico del Calcolo delle Variazioni alla Weierstrass, Ann. Mat. Pura Appl. 124 (1980), 39-58. 
  7. [7] P. Brandi and A. Salvadori, Sull'estensione dell'integrale debole alla Burkill-Cesari ad una misura, Rend. Circ. Mat. Palermo 30 (1981), 207-234. Zbl0477.49029
  8. [8] P. Brandi and A. Salvadori, Existence, semicontinuity and representation for the integrals of the Calculus of Variations. The BV case, in: Atti Convegno Celebrativo I Centenario Circolo Matematico di Palermo, 1984, 447-462. Zbl0613.49030
  9. [9] P. Brandi and A. Salvadori, The nonparametric integral of the Calculus of Variations as a Weierstrass integral: Existence and representation, J. Math. Anal. Appl. 107 (1985), 67-95. Zbl0582.49031
  10. [10] P. Brandi and A. Salvadori, L'integrale del Calcolo delle Variazioni alla Weierstrass lungo curve BV e confronto con i funzionali integrali di Lebesgue e Serrin, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 319-325. 
  11. [11] P. Brandi and A. Salvadori, On the lower semicontinuity of certain integrals of the Calculus of Variations, J. Math. Anal. Appl. 144 (1989), 183-205. Zbl0706.49011
  12. [12] P. Brandi and A. Salvadori, A quasi-additivity type condition and the integral over a BV variety, Pacific J. Math. 146 (1990), 1-19. Zbl0759.49010
  13. [13] P. Brandi and A. Salvadori, On the definition and properties of a variational integral over a BV curve, to appear. Zbl0735.49040
  14. [14] J. C. Breckenridge, Burkill-Cesari integrals of quasi additive interval functions, Pacific J. Math. 37 (1971), 635-654. Zbl0226.28011
  15. [15] L. Cesari, Sulle funzioni a variazione limitata, Ann. Scuola Norm. Sup. Pisa 5 (1936), 299-312. Zbl0014.29605
  16. [16] L. Cesari, Quasi additive set functions and the concept of integral over a variety, Trans. Amer. Math. Soc. 102 (1962), 94-113. Zbl0115.26902
  17. [17] L. Cesari, Extension problem for quasi additive set functions and Radon-Nikodym derivatives, ibid., 114-146. Zbl0115.27001
  18. [18] K. Menger, Géométrie Générale, Mémorial Sci. Math. 124, Gauthier-Villars, Paris, 1954. 
  19. [19] A. Salvadori, Sulla convergenza in lunghezza in senso generalizzato con peso per una successione di curve parametriche, Rend. Circ. Mat. Palermo 26 (1977), 195-228. Zbl0435.28006
  20. [20] G. Warner, The generalized Weierstrass-type integral ∫f(ξ,ϕ), Ann. Scuola Norm. Sup. Pisa 22 (1968), 163-192. 
  21. [21] G. Warner, The Burkill-Cesari integral, Duke Math. J. 35 (1968), 61-78. Zbl0165.06702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.