Le problème de Cauchy-Riemann pour des structures mixtes

Claudio Rea

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1968)

  • Volume: 22, Issue: 4, page 695-727
  • ISSN: 0391-173X

How to cite

top

Rea, Claudio. "Le problème de Cauchy-Riemann pour des structures mixtes." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.4 (1968): 695-727. <http://eudml.org/doc/83475>.

@article{Rea1968,
author = {Rea, Claudio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {partial differential equations},
language = {fre},
number = {4},
pages = {695-727},
publisher = {Scuola normale superiore},
title = {Le problème de Cauchy-Riemann pour des structures mixtes},
url = {http://eudml.org/doc/83475},
volume = {22},
year = {1968},
}

TY - JOUR
AU - Rea, Claudio
TI - Le problème de Cauchy-Riemann pour des structures mixtes
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1968
PB - Scuola normale superiore
VL - 22
IS - 4
SP - 695
EP - 727
LA - fre
KW - partial differential equations
UR - http://eudml.org/doc/83475
ER -

References

top
  1. [1] Andreotti A. et Vesentini, E.Les théorémes fondamentaux de la théorie des espaces holomorphiquement complets, Séminaire Ehresmann, 4 (1962-63), 1-31, Paris, Secrétariat Mathématique. MR171288
  2. [2] Andreotti, A. et Vesentini, E.On deformations of discoutinous groupsActa mathematica, 112, (1964), 249-298. Zbl0163.10301MR169251
  3. [3] Andreotti, A. et Vesentini, E.Carleman estimates for the Laplace- Beltranti equation on complex manifolds. Inst. Hautes Études Sci. Publ. Math., 25, (1965), 81-130. Zbl0138.06604MR175148
  4. [4] Cartan, H.Espaces fibrés analytiques. Symp. Int. de Topolagia alg., Mexico, (1953), 97-121. Zbl0121.30503
  5. [5] Courant Hilbert, D., Methods of mathematical physics, vol. II, Interscience Publishers, New York, 1962. Zbl0099.29504
  6. [6] Friedrichs, K.O., On the differentiability of the solution of partial differential equations. Comm. Pure Appl. Math.6, (1953), 299-326. Zbl0051.32703MR58828
  7. [7] Andreotti, A. et Grauert, H., Théoremes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. Fr, t. 90, (1962), 192-259. Zbl0106.05501MR150342
  8. [8] Haefliger, A.Variétés feuilletées. Cours d'été sur « Topologia differenziale », C. I. M. E. Urbino (1962). Édit. Cremmonese. Roma. Zbl0196.25005
  9. [9] Hörmander, L.An Introduction to complex analysis in several variables. D. Van Nostrand Publ., Princeton, (1966). Zbl0138.06203MR203075
  10. [10] Hörmander, L.L2-estimates and existence theorems for the δ operator., Acta Math.113, (1965), 89-152. Zbl0158.11002
  11. [11] Kodaira, K. et Spencer, D.C.On deformations of complex analytio structures III, Ann. of Math., 71, (1960) 43-76. Zbl0128.16902MR115189
  12. [12] Rea, C.Un'osservazione sulle deformazioni di una varietà completa. Boll. U. M. I, 22, (1967), 345-349. Zbl0162.25301MR226660
  13. [13] Reeb, G.Sur certaines propriétés topologiques des variétés feuilletées, Act. Sc. at Ind., Herman, Paris, (1952). Zbl0049.12602MR55692
  14. [14] Tognoli A.Un criterio di isomorfismo per il primo gruppo di coomologia nel caso non abeliano. À paraître. 
  15. [15] Vesentini E.Lectures on Levi convexity of complex manifolds and cohomology vanishing theorems. Tata Inst of fonnd. research.Bombay. (1967). Zbl0206.36603MR232016

NotesEmbed ?

top

You must be logged in to post comments.