Concerning the envelope of holomorphy of a compact differentiable submanifold of a complex manifold
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1969)
- Volume: 23, Issue: 2, page 347-361
- ISSN: 0391-173X
Access Full Article
topHow to cite
topWells, R. O., Jr.. "Concerning the envelope of holomorphy of a compact differentiable submanifold of a complex manifold." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.2 (1969): 347-361. <http://eudml.org/doc/83494>.
@article{Wells1969,
author = {Wells, R. O., Jr.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {complex functions},
language = {eng},
number = {2},
pages = {347-361},
publisher = {Scuola normale superiore},
title = {Concerning the envelope of holomorphy of a compact differentiable submanifold of a complex manifold},
url = {http://eudml.org/doc/83494},
volume = {23},
year = {1969},
}
TY - JOUR
AU - Wells, R. O., Jr.
TI - Concerning the envelope of holomorphy of a compact differentiable submanifold of a complex manifold
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1969
PB - Scuola normale superiore
VL - 23
IS - 2
SP - 347
EP - 361
LA - eng
KW - complex functions
UR - http://eudml.org/doc/83494
ER -
References
top- [1] E. Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J., 32 (1965), 1-22. Zbl0154.08501MR200476
- [2] A. Browder, Cohomology of maximal ideal spaces, Bull. Amer. Math. Soc.67 (1961), 515-516. Zbl0107.09501MR130580
- [3] S. Greenfield, Cauchy-Riemann equations in several variables, Annali d. Scu. Norm. Sup. di Pisa, 22 (1968), 275-314. Zbl0159.37502MR237816
- [4] R.C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N. J., 1962. Zbl0141.08601MR180696
- [5] R. Harvey and R.O. Wells, JR., Compact holomorphically conrex subsets of a Stein manifold, Trans. Amer. Math. Soc.136 (1969), 509-516. Zbl0175.37204MR235158
- [6] H. Lewy, On the local character of the sulution of an atypical linear differential equation, in three variables and a related theorem for regular functions of two complex variables, Ann. of Math., 64 (1956), 514-522. Zbl0074.06204MR81952
- [7] H. Lewy, On hulls of holomorphy, Comm. Pure Appl. Math.13 (1960), 587-591. Zbl0113.06102MR150339
- [8] H. Rossi, Holomorphically convex sets in several complex variables, Ann. of Math., 74 (1961), 470-493. Zbl0107.28601MR133479
- [9] F. Sommer, Komplex-analytische Blätterung reeler Mannigfaltigkeiten im Cn, Math. Ann.136 (1958), 111-133. Zbl0092.29902MR101924
- [10] B. Weinstock, On Holomorphic Extension from Real Submanifolds of Complex Euclidean Space, thesis, M. I. T., 1966.
- [11] R.O. Wells, JR., On the local holomorphic hull of a real submanifold in several complex variables, Comm. Pure Appl. Math.19 (1966), 145-165. Zbl0142.33901MR197785
- [12] R.O. Wells, JR., Holomorphic hulls and holomorphic convexity of differentiable submanifolds, Trans. Amer. Math. Soc.132 (1968), 245-262. Zbl0159.37702MR222340
- [13] R.O. Wells, JR., Compact real submanifolds of a complex manifold with a nondegenerate holomorphic tangent bundle, Math. Ann.179 (1969), 123-129. Zbl0167.21604MR237823
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.