Concerning the envelope of holomorphy of a compact differentiable submanifold of a complex manifold

R. O., Jr. Wells

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1969)

  • Volume: 23, Issue: 2, page 347-361
  • ISSN: 0391-173X

How to cite

top

Wells, R. O., Jr.. "Concerning the envelope of holomorphy of a compact differentiable submanifold of a complex manifold." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.2 (1969): 347-361. <http://eudml.org/doc/83494>.

@article{Wells1969,
author = {Wells, R. O., Jr.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {complex functions},
language = {eng},
number = {2},
pages = {347-361},
publisher = {Scuola normale superiore},
title = {Concerning the envelope of holomorphy of a compact differentiable submanifold of a complex manifold},
url = {http://eudml.org/doc/83494},
volume = {23},
year = {1969},
}

TY - JOUR
AU - Wells, R. O., Jr.
TI - Concerning the envelope of holomorphy of a compact differentiable submanifold of a complex manifold
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1969
PB - Scuola normale superiore
VL - 23
IS - 2
SP - 347
EP - 361
LA - eng
KW - complex functions
UR - http://eudml.org/doc/83494
ER -

References

top
  1. [1] E. Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J., 32 (1965), 1-22. Zbl0154.08501MR200476
  2. [2] A. Browder, Cohomology of maximal ideal spaces, Bull. Amer. Math. Soc.67 (1961), 515-516. Zbl0107.09501MR130580
  3. [3] S. Greenfield, Cauchy-Riemann equations in several variables, Annali d. Scu. Norm. Sup. di Pisa, 22 (1968), 275-314. Zbl0159.37502MR237816
  4. [4] R.C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N. J., 1962. Zbl0141.08601MR180696
  5. [5] R. Harvey and R.O. Wells, JR., Compact holomorphically conrex subsets of a Stein manifold, Trans. Amer. Math. Soc.136 (1969), 509-516. Zbl0175.37204MR235158
  6. [6] H. Lewy, On the local character of the sulution of an atypical linear differential equation, in three variables and a related theorem for regular functions of two complex variables, Ann. of Math., 64 (1956), 514-522. Zbl0074.06204MR81952
  7. [7] H. Lewy, On hulls of holomorphy, Comm. Pure Appl. Math.13 (1960), 587-591. Zbl0113.06102MR150339
  8. [8] H. Rossi, Holomorphically convex sets in several complex variables, Ann. of Math., 74 (1961), 470-493. Zbl0107.28601MR133479
  9. [9] F. Sommer, Komplex-analytische Blätterung reeler Mannigfaltigkeiten im Cn, Math. Ann.136 (1958), 111-133. Zbl0092.29902MR101924
  10. [10] B. Weinstock, On Holomorphic Extension from Real Submanifolds of Complex Euclidean Space, thesis, M. I. T., 1966. 
  11. [11] R.O. Wells, JR., On the local holomorphic hull of a real submanifold in several complex variables, Comm. Pure Appl. Math.19 (1966), 145-165. Zbl0142.33901MR197785
  12. [12] R.O. Wells, JR., Holomorphic hulls and holomorphic convexity of differentiable submanifolds, Trans. Amer. Math. Soc.132 (1968), 245-262. Zbl0159.37702MR222340
  13. [13] R.O. Wells, JR., Compact real submanifolds of a complex manifold with a nondegenerate holomorphic tangent bundle, Math. Ann.179 (1969), 123-129. Zbl0167.21604MR237823

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.