Singular integrals on homogeneous spaces and some problems of classical analysis

A. Korányi; S. Vági

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1971)

  • Volume: 25, Issue: 4, page 575-648
  • ISSN: 0391-173X

How to cite


Korányi, A., and Vági, S.. "Singular integrals on homogeneous spaces and some problems of classical analysis." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.4 (1971): 575-648. <>.

author = {Korányi, A., Vági, S.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {575-648},
publisher = {Scuola normale superiore},
title = {Singular integrals on homogeneous spaces and some problems of classical analysis},
url = {},
volume = {25},
year = {1971},

AU - Korányi, A.
AU - Vági, S.
TI - Singular integrals on homogeneous spaces and some problems of classical analysis
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1971
PB - Scuola normale superiore
VL - 25
IS - 4
SP - 575
EP - 648
LA - eng
UR -
ER -


  1. [1] A. Benedek, A.P. Calderón and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U. S. A.53 (1965), 1092-1099. Zbl0151.16901MR177312
  2. [2] A.P. Calderón, A general ergodic theorem, Ann. of Math.58 (1953), 182-191. Zbl0052.11903MR55415
  3. [3] A.P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math.88 (1952), 85-139. Zbl0047.10201MR52553
  4. [4] A.P. Calderón and A. Zygmund, Singular integral operators and differential equations, Am. J. Math.79 (1957), 901-921. Zbl0081.33502MR100768
  5. [5] M. Cotlar, A unified theory of Hilbert transforms and ergodic thaorems, Revista Mate matica Cuyana1 (1955), 41-55. Zbl0071.33301MR84632
  6. [6] M. Cotlar, Condioiones de continuidad de operadores potenciales y de Hilbert, Cursos y-seminarios de matemática, Universidad Nacional de Buenos Aires, 1959. Zbl0094.10101MR116190
  7. [7] R.E. Edwards and E. Hewitt, Pointwise limits of convolution operators, Acta Math113 (1965), 181-218. Zbl0161.11104MR177259
  8. [8] P.R. Garabedian, Partial differential equations, Jobn Wiley & Sons, New York, 1964. Zbl0124.30501MR162045
  9. [9] G. Gasper, On the Littlewood-Paley g-function and the Lusin S-function, Trans. Amer. Math. Soc.134 (1968), 385-403. Zbl0169.13402MR235138
  10. [10] Gong Sheng and Sun Ji- Guang, Integrals of Cauchy type in several complex variables. I. Integrals of Cauchy type on a hypersphere, Chinese Math.7 (1965), 138-151. Zbl0156.30401MR193272
  11. [11] L. Hörmander, Estimates for translation invariant operators in L-P spaces, Acta Math.104 (1960), 93-139. Zbl0093.11402MR121655
  12. [12] J. Horváth, Sur les fonctions conjuguées à plusieurs variables, Nederl. Akad. Wetensch. Proc. Ser. A.56 (1953), 17-29. Zbl0050.10501MR53276
  13. [13] A.W. Knapp and E.M. Stein, Singular integrals and the principal series, Proc. Nat. Acad. Sci. U. S. A.63 (1969), 281-284. Zbl0181.12501MR263989
  14. [14] A. Korányi, The Poisson integral for generalized halfplanes and bounded symmetric domains, Ann. of Math.82 (1965), 332-350. Zbl0138.06601MR200478
  15. [15] A. Korányi, Harmonic functions on Hermitian hyperbolic space, Trans. Amer. Math. Soc.135 (1969), 507-516. Zbl0174.38801MR277747
  16. [16] A. Korányi and S. Vági, Intégrales singuliéres sur certains espaces homogènes, C. R. Acad. Sci. Paris268 (1969), 765-768. Zbl0175.14901MR286944
  17. [17] A. Koráknyi, S. Vági and G.V. Welland, Remarks on the Cauchy integral and the conjugate function in generalized half planes, J. of Math. and Mechanics19 (1970), 1069-1081. Zbl0197.36002MR265626
  18. [18] B. Muckfnhoupt and E.M. Stein, Classical expansions and their relation to oonjugate harmonic functions, Trans. Amer. Math. Soc.118 (1965), 17-92. Zbl0139.29002MR199636
  19. [19] C. Müller, Spherical harmonics, Lecture Notes in Mathematics, No. 17. Springer, 1966. Zbl0138.05101MR199449
  20. [20] N.M. Rivière, On singular integrals, Bull. Amer. Math. Soc.75 (1969), 843-847. Zbl0183.11801MR243389
  21. [21] S. Vági, On multipliers and singular integrals in Lp spaces of vector valued functions. Thesis, University of Chicago, 1965. 
  22. [22] G. Weiss, Análisis armónico en varias variables. Teoría de los espacios HP. Cursos y seminarios de matemática, Universidad de Buenos Aires, 1960. Zbl0100.10501MR139902
  23. [23] N.J. Weiss, An isometry of HP-spaces, Proc. Amer. Math. Soc.19 (1968), 1083-1086. Zbl0192.43903MR230931
  24. [24] E.H. Zarantello, The Riesz transform, Univ. of Wisconsin Math. Res. Center, Techical summary reports # 185, and # 186, (1961). 

Citations in EuDML Documents

  1. Peter C. Greiner, On the Laguerre calculus of left-invariant convolution (pseudo-differential) operators on the Heisenberg group
  2. J. C. Clerc, Problème du ¯ b et groupe de Heisenberg (d’après Folland et Stein)
  3. Jacob Burbeam, Do Young Kwak, Norm and Taylor coefficients estimates of holomorphic functions in balls
  4. Adam Korányi, Massimo A. Picardello, Boundary behaviour of eigenfunctions of the Laplace operator on trees
  5. Adam Korányi, Stephen Vági, Cauchy-Szegö integrals for systems of harmonic functions
  6. J. Horvath, Transformations de Marcel Riesz
  7. David Bekollé, Aline Bonami, Estimates for the Bergman and Szegö projections in two symmetric domains of n
  8. Jacqueline Detraz, Classes de Bergman de fonctions harmoniques
  9. Walter Rudin, Spaces of type H + C
  10. Aline Bonami, Noël Lohoué, Projecteurs de Bergman et Szegö pour une classe de domaines faiblement pseudo-convexes et estimations L p

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.