Classes de Bergman de fonctions harmoniques

Jacqueline Detraz

Bulletin de la Société Mathématique de France (1981)

  • Volume: 109, page 259-268
  • ISSN: 0037-9484

How to cite

top

Detraz, Jacqueline. "Classes de Bergman de fonctions harmoniques." Bulletin de la Société Mathématique de France 109 (1981): 259-268. <http://eudml.org/doc/87396>.

@article{Detraz1981,
author = {Detraz, Jacqueline},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Bergman class; harmonic function; gradient},
language = {fre},
pages = {259-268},
publisher = {Société mathématique de France},
title = {Classes de Bergman de fonctions harmoniques},
url = {http://eudml.org/doc/87396},
volume = {109},
year = {1981},
}

TY - JOUR
AU - Detraz, Jacqueline
TI - Classes de Bergman de fonctions harmoniques
JO - Bulletin de la Société Mathématique de France
PY - 1981
PB - Société mathématique de France
VL - 109
SP - 259
EP - 268
LA - fre
KW - Bergman class; harmonic function; gradient
UR - http://eudml.org/doc/87396
ER -

References

top
  1. [1] DUREN. — Theory of Hp-spaces, Academic Press, 1970. Zbl0215.20203MR42 #3552
  2. [2] FABES, JODEIT and RIVIÈRE. — Potential techniques for boundary value problems on C1 domains, Acta Math., t. 141, 1978, p. 165-186. Zbl0402.31009
  3. [3] FEFFERMAN and STEIN. — Hp spaces of several variables, Acta Math., t. 129, 1972, p. 137-193. Zbl0257.46078MR56 #6263
  4. [4] FORELLI and RUDIN. — Projections on spaces of holomorphic fonctions in balls, Indiana Univ. J., t. 24, n° 6, 1974, p. 593-602. Zbl0297.47041MR50 #10332
  5. [5] FRIEDICHS. — On certain inequalities and characteristic value problems for analytic functions and for functions of two variables, T.A.M.S., t. 41, 1937, p. 321-364. Zbl0017.02101MR1501907JFM63.0364.01
  6. [6] HARDY and LITTLEWOOD. — Some properties of conjugate functions, J. Reine Angew Math., t. 167, 1931, p. 405-423. Zbl0003.20203JFM58.0333.03
  7. [7] HARDY, LITTLEWOOD et POLYA. — Inequalities, Cambridge, 1967. 
  8. [8] KORANYI and VAGI. — Singular intergrals on homogeneous spaces and some problems of classical analysis, Ann. Sc. Norm. Sup. Pisa, t. XXV, 1971, p. 575-648. Zbl0291.43014MR57 #3462
  9. [9] STEIN. — Singular integrals and differentiability properties of functions, Princeton, 1970. Zbl0207.13501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.