Classes de Bergman de fonctions harmoniques

Jacqueline Detraz

Bulletin de la Société Mathématique de France (1981)

  • Volume: 109, page 259-268
  • ISSN: 0037-9484

How to cite

top

Detraz, Jacqueline. "Classes de Bergman de fonctions harmoniques." Bulletin de la Société Mathématique de France 109 (1981): 259-268. <http://eudml.org/doc/87396>.

@article{Detraz1981,
author = {Detraz, Jacqueline},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Bergman class; harmonic function; gradient},
language = {fre},
pages = {259-268},
publisher = {Société mathématique de France},
title = {Classes de Bergman de fonctions harmoniques},
url = {http://eudml.org/doc/87396},
volume = {109},
year = {1981},
}

TY - JOUR
AU - Detraz, Jacqueline
TI - Classes de Bergman de fonctions harmoniques
JO - Bulletin de la Société Mathématique de France
PY - 1981
PB - Société mathématique de France
VL - 109
SP - 259
EP - 268
LA - fre
KW - Bergman class; harmonic function; gradient
UR - http://eudml.org/doc/87396
ER -

References

top
  1. [1] DUREN. — Theory of Hp-spaces, Academic Press, 1970. Zbl0215.20203MR42 #3552
  2. [2] FABES, JODEIT and RIVIÈRE. — Potential techniques for boundary value problems on C1 domains, Acta Math., t. 141, 1978, p. 165-186. Zbl0402.31009
  3. [3] FEFFERMAN and STEIN. — Hp spaces of several variables, Acta Math., t. 129, 1972, p. 137-193. Zbl0257.46078MR56 #6263
  4. [4] FORELLI and RUDIN. — Projections on spaces of holomorphic fonctions in balls, Indiana Univ. J., t. 24, n° 6, 1974, p. 593-602. Zbl0297.47041MR50 #10332
  5. [5] FRIEDICHS. — On certain inequalities and characteristic value problems for analytic functions and for functions of two variables, T.A.M.S., t. 41, 1937, p. 321-364. Zbl0017.02101MR1501907JFM63.0364.01
  6. [6] HARDY and LITTLEWOOD. — Some properties of conjugate functions, J. Reine Angew Math., t. 167, 1931, p. 405-423. Zbl0003.20203JFM58.0333.03
  7. [7] HARDY, LITTLEWOOD et POLYA. — Inequalities, Cambridge, 1967. 
  8. [8] KORANYI and VAGI. — Singular intergrals on homogeneous spaces and some problems of classical analysis, Ann. Sc. Norm. Sup. Pisa, t. XXV, 1971, p. 575-648. Zbl0291.43014MR57 #3462
  9. [9] STEIN. — Singular integrals and differentiability properties of functions, Princeton, 1970. Zbl0207.13501

NotesEmbed ?

top

You must be logged in to post comments.