Un teorema di dualita' per i fasci coerenti su uno spazio analitico reale

Fabrizio Catanese

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1973)

  • Volume: 27, Issue: 4, page 845-871
  • ISSN: 0391-173X

How to cite

top

Catanese, Fabrizio. "Un teorema di dualita' per i fasci coerenti su uno spazio analitico reale." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.4 (1973): 845-871. <http://eudml.org/doc/83663>.

@article{Catanese1973,
author = {Catanese, Fabrizio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {ita},
number = {4},
pages = {845-871},
publisher = {Scuola normale superiore},
title = {Un teorema di dualita' per i fasci coerenti su uno spazio analitico reale},
url = {http://eudml.org/doc/83663},
volume = {27},
year = {1973},
}

TY - JOUR
AU - Catanese, Fabrizio
TI - Un teorema di dualita' per i fasci coerenti su uno spazio analitico reale
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1973
PB - Scuola normale superiore
VL - 27
IS - 4
SP - 845
EP - 871
LA - ita
UR - http://eudml.org/doc/83663
ER -

References

top
  1. [1] Bruhat F. - Whitney H., Quelques propriétés fondamentales des ensembles analytiques-réels, Comm. Math. Helvetici33 (pagg. 132-160). Zbl0100.08101MR102094
  2. [2] Cartan H., Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France, 85, (1957) (pagg. 77-100). Zbl0083.30502MR94830
  3. [3] Coen S., Teoria elementare delle funzioni analitiche di più variabili complesse, Università di Pisa (1970). 
  4. [4] Fischer G., Eine Charakterisierung von holomorphen Vektorraumbündeln, Bayer. Akad. d. Wiss., Math. -Natur. Kl., S. B.1966 (1967) (pagg. 101-107). Zbl0159.37603MR218617
  5. [5] Fischer G., Lineare Faserräume und kohärente Modulgarben über komplexen Räumen, Arch. Math.18 (1967) (pagg. 609-617). Zbl0177.34402MR220972
  6. [6] Godement R., Theorie des faisceaux, Actual. Scient. et Ind.1252. Zbl10.0399.01
  7. [7] Grauert H. - Remmert R., Komplexe Räume, Math. Ann.136 (1958) (pagg. 245-318). Zbl0087.29003MR103285
  8. [8] Gunning R.C. - Rossi H., Analytic Functions of Several Complex Variables, Englewood Cliffs (1965). Zbl0141.08601MR180696
  9. [9] Holmann H., Local properties of holomorphic mappings, Proceedings of the Conference on Complex Analysis, Minneapolis (1964) (pagg. 94-109). Zbl0146.31403MR176101
  10. [10] Kaup W., Infinitesimale Transformationsgruppen komplexer Räume, Math. Ann.160 (1965) (pagg. 72-92). Zbl0146.31102MR181761
  11. [11] Kaup W., Reelle Transformationsgruppen und Invariante Metriken auf komplexen Räumen, Inv. Math.3 (1967) (pagg. 43-70). Zbl0157.13401MR216030
  12. [12] Malgrange B., Ideals of differentiable functions, Tata Institute of fundamental research in Mathematics. Zbl0177.17902MR212575
  13. [13] Malgrange B., Analytic spaces, in Topics in several complex variables, Enseignement Mathématique, Monographie n° 17. Zbl0165.40501
  14. [14] Narasimhan R., Introduction to the theory of Analytic Spaces, Springer-Verlag (1966). Zbl0168.06003MR217337
  15. [15] Pontrjagin L., Topological Groups, Princeton University Press, second edition, (1946) (pagg. 216-225). Zbl62.0443.02
  16. [16] Prill D., Über lineare Faserräume und schwach negative holomorphe Geradenbündel, Math. Zeitschr.105 (1968) (pagg. 313-326). Zbl0164.09404MR229266
  17. [17] Remmert R. - Stein K., Über die wesentlichen Singularitäten analytischer Mengen, Math. Ann.126 (1963) (pagg. 263-306, exp. Pag. 303). Zbl0051.06303MR60033
  18. [18] Serre J.P., Faisceaux Algebriques coherents, Annals of Math. II Ser. 61, (pagg. 197-278). Zbl0067.16201MR68874
  19. [19] Serre J.P., Prolongement des faisceaux analytiques-coherents, Ann. Inst. Fourier16 (1966) (pagg. 363-374). Zbl0144.08003MR212214
  20. [20] Steenrod N., The topology of Fibre Bundles, Prin. Math. Ser. 14. Zbl0054.07103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.