Properties of normal boundary problems for elliptic even-order systems

Gerd Grubb

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1974)

  • Volume: 1, Issue: 1-2, page 1-61
  • ISSN: 0391-173X

How to cite

top

Grubb, Gerd. "Properties of normal boundary problems for elliptic even-order systems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.1-2 (1974): 1-61. <http://eudml.org/doc/83671>.

@article{Grubb1974,
author = {Grubb, Gerd},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1-2},
pages = {1-61},
publisher = {Scuola normale superiore},
title = {Properties of normal boundary problems for elliptic even-order systems},
url = {http://eudml.org/doc/83671},
volume = {1},
year = {1974},
}

TY - JOUR
AU - Grubb, Gerd
TI - Properties of normal boundary problems for elliptic even-order systems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1974
PB - Scuola normale superiore
VL - 1
IS - 1-2
SP - 1
EP - 61
LA - eng
UR - http://eudml.org/doc/83671
ER -

References

top
  1. [1] S. Agmon, The coerciveness problem for integro-differential forms, J. Analyse Math., 6 (1958), 183-223. Zbl0119.32302MR132912
  2. [2] S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math., 15 (1962), 119-147. Zbl0109.32701MR147774
  3. [3] S. Agmon, Asymptotic formulas with remainder estimates for eigenvalues of elliptic operators, Arch. Rat. Mech. An., 28 (1968), 165-183. Zbl0159.15903MR228851
  4. [4] S. Agmon - A. Douglis - L. Nirenberg, Estimates near the boundary..., II, Comm. Pure Appl. Math., 17 (1964), 35-92. Zbl0123.28706MR162050
  5. [5] N. Aronszajn - A.N. Milgram, Differential operators in Riemannian manifolds, Rend. Circ. Mat. Palermo, 2 (1953), 266-325. Zbl0053.06502MR64255
  6. [6] L. Boutet De Monvel, Comportement d'un opérateur pseudo-différentiel sur une variété à bord, J. Analyse Math., 17 (1966), 241-304. Zbl0161.07902MR239254
  7. [7] N. Dunford - J. Schwartz, Linear Operators, Part II, Interscience, New York, 1963. Zbl0128.34803MR188745
  8. [8] D.G. De Figueiredo, The coerciveness problem for forms over vector valued functions, Comm. Pure Appl. Math., 16 (1963), 63-94. Zbl0136.09502MR149082
  9. [9] D. Fujiwara, On some homogeneous boundary value problems bounded below, J. Fac. Sci. Univ. Tokyo, Sect. I, 17 (1970), 123-152. Zbl0223.35034MR280865
  10. [10] M. Gehtman, Spectrum of some nonclassical selfadjoint extensions of the Laplace operator, Funkcional. Anal. i Prilozen., 4 (1970). Zbl0225.35076MR282087
  11. [11] G. Grubb, A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Sc. Norm. Sup. Pisa, 22 (1968), 425-513. Zbl0182.14501MR239269
  12. [12] G. Grubb, Les problèmes aux limites généraux d'un opérateur elliptique, provevenant de la théorie variationnelle, Bull. Sc. Math., 94 (1970), 113-157. Zbl0201.46502MR280866
  13. [13] G. Grubb, On coerciveness and semiboundedness of general boundary problems, Israel J. Math., 10 (1971), 32-95. Zbl0231.35027MR318665
  14. [14] G. Grubb, Problèmes aux limites semi-bornés pour les systèmes elliptiques. Le spectre négatif des problèmes aux limites auto-adjoint fortement elliptiques, C.R. Acad. Sci. Paris, Sér. A274 (1972), 320-323 and 409-412. Zbl0243.35032MR298474
  15. [15] G. Grubb, Caractérisation de quelques propriétés des problèmes aux limites pour les systèmes elliptiques, Séminaire Goulaouic-Schwartz1971-72, exposés XIX et 19 bis. Zbl0278.35035MR397794
  16. [16] G. Grubb, Inequalities for boundary value problems for systems of partial differential operators, Astérisque, 2-3 (1973) 171-187. Zbl0267.35026
  17. [17] G. Grubs, Weakly semibounded boundary problems and sesquilinear forms, Ann. Inst. Fourier, 23 (1973), 145-191. Zbl0261.35011MR344669
  18. [18] L. Hörmander, Pseudo-differential operators and non-elliptic boundary problems, Ann. of Math., 83 (1966), 129-209. Zbl0132.07402MR233064
  19. [19] L. Hörmander, The spectral function of an elliptic operator, Acta Math., 121 (1968), 193-218. Zbl0164.13201MR609014
  20. [20] Ky Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci. U.S.A., 37 (1951), 760-766. Zbl0044.11502MR45952
  21. [21] J.L. Lions - E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1 and 2, Ed. Dunod, Paris, 1968. Zbl0165.10801MR247243
  22. [22] A Melin, Lower bounds for pseudo-differential operators, Ark. f. Mat., 9 (1971), 117-140. Zbl0211.17102MR328393
  23. [23] V.I. Paraska, On asymptotics of eigenvalues and singular numbers of linear operators which increase smoothness, Mat. Sb.(N.S.), 68 (110) (1965), 623-631. Zbl0149.10501MR199749
  24. [24] F. Rellich, Halbbeschränkte gewönliche Differentialoperatoren zweiter Ordnung, Math. Ann., 122 (1951), 343-368. Zbl0044.31201MR43316
  25. [25] R. Seeley, Singular integrals and boundary value problems, Amer. J. Math., 88 (1966), 781-809. Zbl0178.17601MR209915
  26. [26] R. Seeley, Complex powers of an elliptic operator, Proc. Symp. Pure Math.(AMS), 10 (1968), 288-307. Zbl0159.15504MR237943
  27. [27] R. Seeley, Fractional powers of boundary problems, Actes Congrés Intern. Nice1970, vol. 2, 795-801. Zbl0224.35029MR510056

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.