Multiapplications à retraction finie

Jean Jacques Moreau

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1974)

  • Volume: 1, Issue: 3-4, page 169-203
  • ISSN: 0391-173X

How to cite

top

Moreau, Jean Jacques. "Multiapplications à retraction finie." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.3-4 (1974): 169-203. <http://eudml.org/doc/83675>.

@article{Moreau1974,
author = {Moreau, Jean Jacques},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {fre},
number = {3-4},
pages = {169-203},
publisher = {Scuola normale superiore},
title = {Multiapplications à retraction finie},
url = {http://eudml.org/doc/83675},
volume = {1},
year = {1974},
}

TY - JOUR
AU - Moreau, Jean Jacques
TI - Multiapplications à retraction finie
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1974
PB - Scuola normale superiore
VL - 1
IS - 3-4
SP - 169
EP - 203
LA - fre
UR - http://eudml.org/doc/83675
ER -

References

top
  1. Berge ( C.): [1] Espaces topologiques, fonctions multivoques, Dunod, 1959. Zbl0088.14703MR105663
  2. Bridgland ( T.F.): [1] Contributions to the theory of generalized differential equations, I, Math. Systems Theory, 3 (1969), pp. 17-50; II, ibid., pp. 156-165. Zbl0179.12504MR249777
  3. [2] Extreme limits of compacta valued functions, Trans. Amer. Math. Soc., 170 (1972), pp. 149-163. Zbl0271.54013MR362209
  4. Hermes ( H.): [1] On continuous and measurables selections and the existence of solutions of generalized differential equations, Proc. Amer. Math. Soc., 29 (1971), pp. 535-542. Zbl0202.10002MR277794
  5. Kikuchi ( N.) - Tomita ( Y.): [1] On the absolute continuity of multifunctions and orientor fields, Funkcialaj ekvacioj, 14 (1971), pp. 161-170. Zbl0248.49023MR306669
  6. Laurent ( P.J.): [1] Approximation et optimisation, Hermann, 1972, Chap. VI. Zbl0238.90058MR467080
  7. Moreau ( J.J.): [1] Fonctionnelles convexes, Séminaire sur les équations aux dérivées partielles, Collège de France, Paris, 1967 (multigraphié 108 p.). MR390443
  8. [2] Inf-convolution, sous-additivité, convexité des fonctions numériques, J. Math. pures et appl., 49 (1970), pp. 109-154. Zbl0195.49502MR288602
  9. [3] Sur l'évolution d'un système élasto-visco-plastique, C. R. Acad. Sci. Paris, Sér. A, 273 (1971), pp. 118-121. Zbl0245.73029
  10. [4] Rafle par un convexe variable, première partie, Séminaire d'Analyse Convexe, Montpellier, 1971, exposé n. 15 (multigraphié 43 p.); deuxième partie, ibid., 1972, exposé n. 3 (multigraphié 36 p.). 
  11. [5] Rétraction d'une multiapplication, Séminaire d'Analyse Convexe, Montpellier, 1972, exposé n. 13 (multigraphié 89 p.). 
  12. [6] Sélections de multiapplications à rètraction finie, C.R. Acad. Sci. Paris, Sér. A, 276 (1973), pp. 265-268. Zbl0246.54019MR367749
  13. [7] Problème d'évolution associé à un convexe mobile d'un espace hilbertien, C.R. Acad. Sci. Paris, Sér. A, 276 (1973), pp. 791-794. Zbl0248.35021
  14. [8] Intersection de deux convexes mobiles, Séminaire d'Analyse Convexe, Montpellier, 1973, Exposé n. 1 (multigraphié 26 p.) résumé dans: C.R. Acad. Sci. Paris, Sér. A, 276 (1973), pp. 1505-1508. 
  15. [9] Systèmes élastoplastiques de liberté finie, Séminaire d'Analyse Convexe, Montpellier, 1973, Exposé n. 12 (multigraphié 33 p.). Zbl0351.73050
  16. [10] On unilateral constraints, friction and plasticity, in : New variational techniques in Mathematical physics, Centro Internazionale Matematico Estivo, 1973. 
  17. [11] Compléments sur les multiapplications à rétraction finie, Séminaire d'Analyse Convexe, Montpellier, 1974, Exposé n. 9 (multigraphié 26 p.). Zbl0358.46029
  18. Van Cutsem ( B.): [1] Eléments aléatoires à valeurs convexes compactes, Thèse, Grenoble, 1971. 
  19. [2] Problems of convergence in stochastic linear programming, in: Techniques of Optimization, (A. V. BALAKRISHNAM, ed.) Academic Press, 1972, pp. 445-454. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.