On the trace of potentials

Jaak Peetre

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1975)

  • Volume: 2, Issue: 1, page 33-43
  • ISSN: 0391-173X

How to cite

top

Peetre, Jaak. "On the trace of potentials." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.1 (1975): 33-43. <http://eudml.org/doc/83684>.

@article{Peetre1975,
author = {Peetre, Jaak},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {33-43},
publisher = {Scuola normale superiore},
title = {On the trace of potentials},
url = {http://eudml.org/doc/83684},
volume = {2},
year = {1975},
}

TY - JOUR
AU - Peetre, Jaak
TI - On the trace of potentials
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1975
PB - Scuola normale superiore
VL - 2
IS - 1
SP - 33
EP - 43
LA - eng
UR - http://eudml.org/doc/83684
ER -

References

top
  1. [1] D.R. Adams, Traces of potentials arising from translation invariant operators, Ann. Scuola Norm. Sup. Pisa, 25 (1971), pp. 203-217. Zbl0219.46027MR287301
  2. [2] D.R. Adams, A trace inequality for generalized potentials, Studia Math., 48 (1973), pp. 99-105. Zbl0237.46037MR336316
  3. [3] G. Alexits, Konvergenzprobleme der Orthogonalreihen, Berlin, 1960. Zbl0097.27702MR162091
  4. [4] N. Aronszajn, Boundary values of functions with finite Dirichlet integral, Technical report, Univ. of Kansas, 9155. 
  5. [5] N. Aronszajn - F. Mulla - P. Szeptycki, On spaces of potentials connected with LP spaces, Ann. Inst. Fourier, 13 (1963), pp. 211-306. Zbl0121.09604MR180846
  6. [6] V.M. Babič - L.N. Slobodeckij, On boundedness of the Dirichlet integrals, Dokl. Akad. Nauk SSSR, 106 (1956), pp. 604-606 (Russian). MR76886
  7. [7] L. Blomquist - A. Jonsson, Representation of Lipschitz continuous functions by potentials, Technical report, Umeå, 1972. Zbl0329.26015
  8. [8] P.L. Butzer - H. Berens, Semi-groups of operators and approximation, Springer, Berlin - Heidelberg - New York, 1966. Zbl0164.43702MR230022
  9. [9] T. Carleman, Sur les équations intégrales singulières à noyau réel et symétrique., Uppsala, 1923. Zbl49.0272.01JFM49.0272.01
  10. [10] T.M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc., 20 (1970), pp. 749-768. Zbl0211.39203MR268388
  11. [11] G. Frobenius, Über Matrizen aus positiven Elementen, II, Berliner Sitzungsber (1909), pp. 514-518. JFM40.0202.02
  12. [12] E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Padova, 27 (1957), pp. 284-305. Zbl0087.10902MR102739
  13. [13] E. Gagliardo, On integral transformations with positive kernel, Proc. Amer. Math. Soc., 16 (1965), pp. 429-434. Zbl0161.32404MR177314
  14. [14] G.H. Hardy - J.E. L - G. Pólya, Inequalities, Cambridge, 1934. Zbl0010.10703JFM60.0169.01
  15. [15] A. Jonsson, Imbedding of Lipschitz continuous functions in potential spaces, Technical report, Umeå, 1973. 
  16. [16] J. Peetre, Espaces d'interpolation et théorème de Soboleff, Ann. Inst. Fourier, 16 (1966), pp. 279-317. Zbl0151.17903MR221282
  17. [17] J. Peetre, Zur Interpolation von Operatorenräumen, Arch. Math. (Basel), 21 (1970), pp. 601-608. Zbl0231.46038MR291880
  18. [18] I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math., 140 (1911), pp. 1-28. Zbl42.0367.01JFM42.0367.01
  19. [19] T. Sjödin, Bessel potentials and extension of continuous functions, Technical report, Umeå, 1973. Zbl0327.31008
  20. [20] E. Stein, The characterization of functions arising as potentials, II, Bull. Amer. Math. Soc., 68 (1962), pp. 577-582. Zbl0127.32002MR142980
  21. [21] H. Wallin, Continuous functions and potential theory, Ark. Mat., 5 (1963), pp. 55-84. Zbl0134.09404MR165136

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.