On the collineation group of a normal projective abelian variety

Federico Gaeta

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1975)

  • Volume: 2, Issue: 1, page 45-87
  • ISSN: 0391-173X

How to cite

top

Gaeta, Federico. "On the collineation group of a normal projective abelian variety." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.1 (1975): 45-87. <http://eudml.org/doc/83685>.

@article{Gaeta1975,
author = {Gaeta, Federico},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {45-87},
publisher = {Scuola normale superiore},
title = {On the collineation group of a normal projective abelian variety},
url = {http://eudml.org/doc/83685},
volume = {2},
year = {1975},
}

TY - JOUR
AU - Gaeta, Federico
TI - On the collineation group of a normal projective abelian variety
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1975
PB - Scuola normale superiore
VL - 2
IS - 1
SP - 45
EP - 87
LA - eng
UR - http://eudml.org/doc/83685
ER -

References

top
  1. [1] Andreotti, Sopra le varietà di Picard d'una superficie algebrica, Rend. Accad. Lincei, vol. X, May 1951, pp. 380-85. Zbl0049.11101
  2. [2] Andreotti, Recherches sur les surfaces algébriques irregulières, Mém. Acad. Roy. Belgique, 27 (1952), pp. 1-36. Zbl0048.37902MR58248
  3. Andreotti-Mayer, On period relations for Abelian integrals on algebraic curves, Annali Scuola Normale Superiore di Pisa, vol. XXI, fasc. II (1967). Zbl0222.14024
  4. Appell, Sur les fonctions périodiques de deux variables, J. de Math., serie IV, 7 (1891), pp. 157-219. Zbl23.0430.01JFM23.0430.01
  5. Bagnera-De Franchis, Le superficie algebriche le quali ammettono una rappresentazione parametrica mediante funzioni iperellittiche di due argomenti, Memoria della Società dei XL, serie III, 15 (1908), pp. 251-343. Zbl39.0698.03JFM39.0698.03
  6. Bianchi, Funzioni ellittiche, Zanichelli, Bologna, 1930. 
  7. H. Cartan, Fonctions thêta sur le tore, I, II, Sem. H. Cartan, 1951-52. 
  8. Cartier, Quantum mechanical commutation relations and theta functions, Proceedings of Symposia in Pure Mathematics, vol. IX, 1966. Zbl0178.28401MR216825
  9. Chow, On compact complex analytic varieties, American Journal of Math., 71 (1949), pp. 893-914. Zbl0041.48302MR33093
  10. Chow, , Van der Waerden, , Zag, , IX, Über zugeordnete Formen und algebraische Systeme von algebraischen Mannigfaltigkeiten, Math. Annalen, 113 (1937), pp. 692-704. Zbl0016.04004JFM62.0772.02
  11. Conforto, AbelscheFunktionen und algebraische Geometrie, Springer, Band 84, Berlin, 1956. Zbl0074.36601MR79316
  12. Courant - Hurwitz, Funktionentheorie, Grundlehren Math. Wiss., Band 3, 4Auflage, Berlin, 1964. 
  13. Dolbeault, Fonctions theta associées à un diviseur donné, H. Cartan's Séminaire, 1952. 
  14. Enriques - Severi, Mémoire sur les surfaces hyperelliptiques, Acta Mathematica, 32 (1909), pp. 283-392 and 33 (1910), pp. 321-399. Zbl40.0684.01JFM41.0522.01
  15. Farkas, On the Schottky relation and its generalization to arbitrary genus, Annals. of Mathematics, July 1970, pp. 57-81. Zbl0202.07902MR264057
  16. Farkas - Rauch, Period relations of Schottky type on Riemann surfaces, Annals of Mathematics, 1970. Zbl0204.09602
  17. FrobeniusÜber die Grundlagen der Theorie der Jacobischen Funktionen, J.f.r.u. angewandte Math. (Crelle, J.), 17 (1884), pp. 16-48, 188-223. JFM16.0378.01
  18. Hodge - Pedoe, Methods of algebraic Geometry, I, II, CambridgeUn. Press, 1952. Zbl0048.14502
  19. Humbert, Théorie générale des surfaces hyperelliptiques, J. Math. (IV), 9 (1893), pp. 29-170 and 361-475. Zbl25.1220.01JFM25.1220.01
  20. Hurwitz, Über endliche Gruppe linearer Substitutionen, welche in der Theorie der elliptischen Transzendenten auftreten, Mathematische Annalen, Bd. 27 (1886), pp. 183-233; Mathematische Werke, Bd. I, Funktionentheorie, p. 189. MR1510374JFM19.0472.01
  21. [1] Igusa, On the Picard varieties attached to algebraic varieties, American Journal of Mathematics, 74 (1952), pp. 1-22. Zbl0049.38601MR46076
  22. [2] Igusa, Theta functions, Grundlehren Bd., 194, Springer, New York, 1972. Zbl0251.14016MR325625
  23. Jung - Schottky, Neue Sätze über Symmetralfunktionen und die Abelschen Funktionen der Riemannscher Theorie, Sitzungsberichte der Preussischen Acad. Wiss. (Berlin) Phys. Math. Classe (1909), pp. 282-297. Zbl40.0489.03JFM40.0489.03
  24. Klein, Über die elliptischen Normalkurven der n-ten Ordnung, Abh. math. phys. Klasse der Sachsischen Kgl. Gesellschaft der Wiss., Bd. 13, Nr. IV(1885) or Gesammelte Mathematische Abhandlungen, III, Berlin, Springer, 1923, pp. 198-254. 
  25. Kloosterman, The behaviour of general theta functions under the modular group, Ann. of Math., 47 (1946), pp. 317-45. Zbl0063.03262
  26. KrazerLehrbuch der Thetafunktionen, Chelsea, N.Y., 1970 (reprint of the 1903 original edition). Zbl0212.42901
  27. Krazer-Prym, Neue Grundlagen einer Theorie der allgemeinen Thetafunctionen, B. G. Teubner, Leipzig, 1892. JFM23.0492.02
  28. Krazer - Wirtinger, Abelsche Functionen und allgemeine Thetafunktionen, Enz. der Math. Wiss. II, B. 7, S. 636. Zbl47.0362.04JFM47.0362.04
  29. Lang, Abelian varieties, Interscience Pub. Inc., New York, 1959. Zbl0098.13201MR106225
  30. Lefschetz, On certain numerical invariants of algebraic varieties with application to Abelian varieties, Trans. Amer. Math. Soc., 22 (1921), pp. 327-482, reprinted in Selected Papers, Chelsea, N. Y., 1971. Zbl48.0428.03MR1501178JFM48.0428.03
  31. Morikawa, OnAbelian varieties, Nagoya Math. Journal, 6 (1953), pp. 151-170. Zbl0052.38001MR59025
  32. [1] D. Mumford, Abelian varieties, Oxford University Press, 1970. Zbl0223.14022MR282985
  33. [2] D. Mumford, On the equations defining Abelian varieties, I-III, Invent. Math., 1 (1966), pp. 287-354; 3 (1967), pp. 75-135 and 215-244. Zbl0219.14024MR204427
  34. H. Poincaré, Sur les propriétés du potentiel et sur les fonctions abeliennes, Acta Mathematica, 22 (1899), pp. 89-178. JFM29.0370.02
  35. [1] Rosati, Sopra le funzioni abeliani pari e le varietà abeliane di rango due, Rendiconti di Matematica, Appl., Roma (1952), pp. 28-61. Zbl0048.14701
  36. [2] Rosati, Osservazioni su alcuni gruppi, finiti di omografie appartenenti ad una varietà di Picard e ad una varietà abeliana di rango due, Rendiconti di Matematica, Appl. Roma (1952), pp. 453-469. Zbl0049.38602MR61416
  37. Samuel, Méthodes d'Algèbre abstraite en Géométrie algébrique, 2-nd Ed., Ergebrisse der Math., Bd. 4, Springer, 1967. Zbl0146.16901
  38. Satake, Fock representations and theta-functions, Advances in the Theory of Riemann surfaces, Proceedings of the 1969 Stony Brook Conference, Annals of Mathematics Studies, Princeton Un. Press, 1971. Zbl0217.43301MR424698
  39. [1] Schottky, Über die Moduln der Thetafunctionen, Acta Math., 1903, pp. 235-288. Zbl34.0506.03JFM34.0506.03
  40. [2] Schottky, Zur Theorie der Abelscher Funktionen von vier Variabeln, J. Reine Ang. Math., 102 (1888), pp. 304-352. JFM20.0488.02
  41. [1] C.L. Siegel, Analytic functions of several complex variables, Lectures at the Institute ofr Advanced Study, 1948-49. Zbl0036.05004MR34847
  42. [2] C.L. Siegel, Moduln Abelscher Funktionen, Nachrichten der Akad. Wiss. Gyttingen, Math.-Phys. Klasse 1960, N. 25, pp. 365-427 and Gesammelte Abhandlungeu, vol. III, Springer, Berlin, 1966. Zbl0122.32102MR166196
  43. Traynard, Sur les fonctions thêta de deux variables et les surfaces hyperelliptiques, Annales de l'Ecole normale supérieure, S. II, 24 (1907), Cap. VIII. Zbl38.0481.01JFM38.0481.01
  44. Van Der Waerden, Einführung in die Algebraische Geometrie, Springer, Berlin, 1939. Zbl0021.25001JFM65.1393.01
  45. [1] A. Weil, Théorèmes fondamentaux de la théorie des fonctions thêta, Séminaire Bourbake, Exp. 16, 1949. Zbl0111.27603
  46. [2] A. Weil, Variétés Kähleriennes, Act. Sci. Ind. 1267, Hermann, Paris, 1958.. MR111056
  47. [3] A. Weil, Lecture notes on algebraic fibre bundles, Chicago. 
  48. [4] A. Weil, On the projective embedding of Abelian varieties, Algebraic Geom. and Topology (Symposium in Honor of Lefschetz), Princeton Un. Press, 1957. Zbl0091.33301MR84850
  49. [5] A. Weil, Foundations of algebraic Geometry, Colloquium AMS, vol. XXIX, 2-nd Ed., 1962. Zbl0168.18701MR144898
  50. Wirtinger, Untersuchungen über Thetafunktionen, B. G. Teubner, Leipzig, 1815. JFM26.0514.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.