Global properties of components of solutions of non-linear second order ordinary differential equations on the half-line

Charles A. Stuart

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1975)

  • Volume: 2, Issue: 2, page 265-286
  • ISSN: 0391-173X

How to cite

top

Stuart, Charles A.. "Global properties of components of solutions of non-linear second order ordinary differential equations on the half-line." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.2 (1975): 265-286. <http://eudml.org/doc/83689>.

@article{Stuart1975,
author = {Stuart, Charles A.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {265-286},
publisher = {Scuola normale superiore},
title = {Global properties of components of solutions of non-linear second order ordinary differential equations on the half-line},
url = {http://eudml.org/doc/83689},
volume = {2},
year = {1975},
}

TY - JOUR
AU - Stuart, Charles A.
TI - Global properties of components of solutions of non-linear second order ordinary differential equations on the half-line
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1975
PB - Scuola normale superiore
VL - 2
IS - 2
SP - 265
EP - 286
LA - eng
UR - http://eudml.org/doc/83689
ER -

References

top
  1. [1] J. Wolkowisky, Non-linear Sturm-Liouville problems, Arch. Rational Mech. Anal., 35 (1969), pp. 299-320. Zbl0186.41203MR251297
  2. [2] M.G. Crandall - P.H. Rabinowitz, Non-linear Sturm-Liouville eigenvalue problems and topological degree, J. Math. Mech., 19 (1970), pp. 1083-1102. Zbl0206.09705MR259232
  3. [3] P.H. Rabinowitz, Non-linear Sturm-Liouville eigenvalue problems for second order ordinary differential equations, Comm. Pure Applied Math., 23 (1970), pp. 939-962. Zbl0206.09706MR284642
  4. [4] R.E.L. Turner, Non-linear eigenvalue problems with non-local operators, Comm. Pure Applied Math., 23 (1970), 963-972. Zbl0201.14501MR273334
  5. [5] P.H. Rabinowitz, Some global results for non-linear eigenvalue problems, J. Functional Anal., 7 (1971), pp. 487-513. Zbl0212.16504MR301587
  6. [6] P.H. Rabinowitz, A global theorem for non-linear eigenvalue problems and applications, in Contributions to Non-linear Functional Analysis, Edit. E. Zarantonello, Academic Press, New York, 1971. Zbl0271.47020MR390858
  7. [7] R.D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl., 89 (1971), pp. 217-258. Zbl0226.47031MR312341
  8. [8] C.A. Stuart, Some bifurcation theory for k-set contractions, in Proc. London Math. Soc., 27 (1973), pp. 531-550. Zbl0268.47064MR333856
  9. [9] C.A. Stuart, Existence theory for the Hartree equation, Arch. Rational Mech. Anal., 51 (1973), pp. 60-69. Zbl0287.34032MR347278
  10. [10] M.G. Crandall - P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Anal., 8 (1971), pp. 321-340. Zbl0219.46015MR288640
  11. [11] G.T. Whyburn, Topological Analysis, Princeton University Press, Princeton, 1958. Zbl0080.15903MR99642
  12. [12] N. Dunford - J.T. Schwartz, Linear Operators, Part II, Interscience, New York, 1963. Zbl0128.34803MR188745
  13. [13] C.A. Stuart, Global properties of components of solutions of non-linear second order ordinary differential equations on the half-line, Battelle Mathematics Report No. 75, June 1973. 
  14. [14] C.A. Stuart, An example in non-linear functional analysis - the Hartree equation, J. Math. Anal. Appl., 49 (1975), 725-733. Zbl0311.47032MR390862
  15. [15] C.A. Stuart, Set contractions in the L2-theory of differential equations, to appear in Gesellschaft Math. und Datenverarbeitung, Bonn. Zbl0336.34028MR435544

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.