Surfaces of minimum capacity for a knot
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1975)
- Volume: 2, Issue: 4, page 497-505
- ISSN: 0391-173X
Access Full Article
topHow to cite
topCaffarelli, Luis A.. "Surfaces of minimum capacity for a knot." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.4 (1975): 497-505. <http://eudml.org/doc/83700>.
@article{Caffarelli1975,
author = {Caffarelli, Luis A.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {497-505},
publisher = {Scuola normale superiore},
title = {Surfaces of minimum capacity for a knot},
url = {http://eudml.org/doc/83700},
volume = {2},
year = {1975},
}
TY - JOUR
AU - Caffarelli, Luis A.
TI - Surfaces of minimum capacity for a knot
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1975
PB - Scuola normale superiore
VL - 2
IS - 4
SP - 497
EP - 505
LA - eng
UR - http://eudml.org/doc/83700
ER -
References
top- [1] Courant - Hilbert, Methods of Mathematical Physics, vol. II. Zbl0063.03051
- [2] G.C. Evans, Surfaces of Minimum Capacity, Proc. Nat. Acad. Sci., 26 (1940), 664-667. Zbl0063.01292MR2465
- [3] G.C. Evans, Lectures on Multiple Valued Functions in Space, Univ. Calif. Publ. Math., N. S. I (1951), 281-340. Zbl0043.10302MR48640
- [4] G.C. Evans, Kellogg's Uniqueness Theorem and Applications, Courant Anniversary Volume (1948), 95-104. Zbl0033.37203MR22955
- [5] R.H. Fox, A Quick Trip through ffinot Theory, Topology of 3-Manifolds, Proc. Univ. of Georgia (1962).
- [6] T.S. Hu, Homotopy Theory, Academic Press (1959). Zbl0088.38803MR106454
- [7] O.D. Kellogg, Foundations of Potential Theory, Berlin (1929). Zbl55.0282.01JFM55.0282.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.