The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Surfaces of minimum capacity for a knot”

Crosscaps and knots.

Clark, Bradd Evans (1978)

International Journal of Mathematics and Mathematical Sciences

Similarity:

An indestructible Blaschke product in the little Bloch space.

Christopher J. Bishop (1993)

Publicacions Matemàtiques

Similarity:

The little Bloch space, B, is the space of all holomorphic functions f on the unit disk such that lim lf'(z)l (1- lzl) = 0. Finite Blaschke products are clearly in B, but examples of infinite products in B are more difficult to obtain (there are now several constructions due to Sarason, Stephenson and the author, among others). Stephenson has asked whether B contains an infinite, indestructible Blaschke product, i.e., a Blaschke product B so that (B(z) - a)/(1 - âB(z)), is also a Blaschke...

Harmonic morphisms onto Riemann surfaces and generalized analytic functions

Paul Baird (1987)

Annales de l'institut Fourier

Similarity:

We study harmonic morphisms from domains in R 3 and S 3 to a Riemann surface N , obtaining the classification of such in terms of holomorphic mappings from a covering space of N into certain Grassmannians. We show that the only non-constant submersive harmonic morphism defined on the whole of S 3 to a Riemann surface is essentially the Hopf map. Comparison is made with the theory of analytic functions. In particular we consider multiple-valued harmonic morphisms defined on domains...

Invariant subspaces on open Riemann surfaces. II

Morisuke Hasumi (1976)

Annales de l'institut Fourier

Similarity:

We considerably improve our earlier results [Ann. Inst. Fourier, 24-4 (1974] concerning Cauchy-Read’s theorems, convergence of Green lines, and the structure of invariant subspaces for a class of hyperbolic Riemann surfaces.