A semilinear equation in L 1 ( N )

Philippe Benilan; Haim Brezis; Michael G. Crandall

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1975)

  • Volume: 2, Issue: 4, page 523-555
  • ISSN: 0391-173X

How to cite


Benilan, Philippe, Brezis, Haim, and Crandall, Michael G.. "A semilinear equation in $L^1 (\mathbb {R}^N)$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.4 (1975): 523-555. <http://eudml.org/doc/83702>.

author = {Benilan, Philippe, Brezis, Haim, Crandall, Michael G.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {523-555},
publisher = {Scuola normale superiore},
title = {A semilinear equation in $L^1 (\mathbb \{R\}^N)$},
url = {http://eudml.org/doc/83702},
volume = {2},
year = {1975},

AU - Benilan, Philippe
AU - Brezis, Haim
AU - Crandall, Michael G.
TI - A semilinear equation in $L^1 (\mathbb {R}^N)$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1975
PB - Scuola normale superiore
VL - 2
IS - 4
SP - 523
EP - 555
LA - eng
UR - http://eudml.org/doc/83702
ER -


  1. [1] H. Brezis, Solutions of variational inequalities with compact support, Uspekhi Mat. Nauk., 129 (1974), pp. 103-108. Zbl0296.35025MR481460
  2. [2] H. Brezis - W. Strauss, Semilinear elliptic equations in L1, J. Math. Soc. Japan, 25 (1973), pp. 565-590. Zbl0278.35041MR336050
  3. [3] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York, 1969. Zbl0224.35002MR445088
  4. [4] Y. Konishi, Semi-linear Poisson's Equations, Proc. Japan Acad., 49 (1973), pp. 100-105. Zbl0267.47039MR331134
  5. [5] L. Nirenberg - H.F. Walker, The null spaces of elliptic partial differential operators in RN, J. Math. Anal. Appl., 42 (1973), pp. 271-301. Zbl0272.35029MR320821
  6. [6] R. Redheffer, Nonlinear differential inequalities and functions of compact support, to appear. Zbl0361.35029MR407450
  7. [7] G. Stampacchia, Equations Elliptiques du Second Ordre à Coefficients Discontinus, Les Presses de l'Université de Montreal, Montreal, 1966. Zbl0151.15501MR251373
  8. [8] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR290095
  9. [9] E. Stein - G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971. Zbl0232.42007MR304972

Citations in EuDML Documents

  1. H. Brezis, Problèmes elliptiques et paraboliques non linéaires avec données mesures
  2. Haïm Brézis, Équations non linéaires du type Thomas-Fermi
  3. Laurent Véron, Global behaviour and symmetry properties of singular solutions of nonlinear elliptic equations
  4. Frank Pacard, A priori regularity for weak solutions of some nonlinear elliptic equations
  5. F. Andreu, N. Igbida, J. M. Mazón, J. Toledo, L 1 existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions
  6. Thierry Gallouët, Yannick Sire, Some possibly degenerate elliptic problems with measure data and non linearity on the boundary
  7. Amina Chabi, Alain Haraux, Un théorème de valeurs intermédiaires dans les espaces de Sobolev et applications
  8. Philippe Bénilan, Lucio Boccardo, Thierry Gallouët, Ron Gariepy, Michel Pierre, Juan Luis Vazquez, An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations
  9. Lucio Boccardo, Haïm Brezis, Some remarks on a class of elliptic equations with degenerate coercivity
  10. Tommaso Leonori, Bounded Solutions for Some Dirichlet Problems with L 1 ( Ω ) Data

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.