L 1 existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions

F. Andreu; N. Igbida; J. M. Mazón; J. Toledo

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 1, page 61-89
  • ISSN: 0294-1449

How to cite

top

Andreu, F., et al. "${L}^{1}$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions." Annales de l'I.H.P. Analyse non linéaire 24.1 (2007): 61-89. <http://eudml.org/doc/78729>.

@article{Andreu2007,
author = {Andreu, F., Igbida, N., Mazón, J. M., Toledo, J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Quasilinear elliptic equations; Nonlinear boundary conditions; Stefan problem; Hele-Shaw problem; -Laplace operator},
language = {eng},
number = {1},
pages = {61-89},
publisher = {Elsevier},
title = {$\{L\}^\{1\}$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions},
url = {http://eudml.org/doc/78729},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Andreu, F.
AU - Igbida, N.
AU - Mazón, J. M.
AU - Toledo, J.
TI - ${L}^{1}$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 1
SP - 61
EP - 89
LA - eng
KW - Quasilinear elliptic equations; Nonlinear boundary conditions; Stefan problem; Hele-Shaw problem; -Laplace operator
UR - http://eudml.org/doc/78729
ER -

References

top
  1. [1] K. Ammar, F. Andreu, J. Toledo, Quasi-linear elliptic problems in L 1 with non homogeneous boundary conditions, Rend. Mat. Univ. Roma, in press. Zbl1153.35026
  2. [2] F. Andreu, N. Igbida, J.M. Mazón, J. Toledo, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions, in preparation. Zbl1116.35073
  3. [3] Andreu F., Mazón J.M., Segura de León S., Toledo J., Quasi-linear elliptic and parabolic equations in L 1 with nonlinear boundary conditions, Adv. Math. Sci. Appl.7 (1) (1997) 183-213. Zbl0882.35048MR1454663
  4. [4] Ph. Bénilan, Equations d'évolution dans un espace de Banach quelconque et applications, Thesis, Univ. Orsay, 1972. 
  5. [5] Bénilan Ph., Boccardo L., Gallouët Th., Gariepy R., Pierre M., Vázquez J.L., An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)22 (2) (1995) 241-273. Zbl0866.35037MR1354907
  6. [6] Benilan Ph., Brezis H., Crandall M.G., A semilinear equation in L 1 R N , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)2 (4) (1975) 523-555. Zbl0314.35077MR390473
  7. [7] Bénilan Ph., Crandall M.G., Completely accretive operators, in: Semigroup Theory and Evolution Equations, Delft, 1989, Lecture Notes in Pure and Appl. Math., vol. 135, Dekker, New York, 1991, pp. 41-75. Zbl0895.47036MR1164641
  8. [8] Ph. Bénilan, M.G. Crandall, A. Pazy, Evolution Equations governed by accretive operators, in press. Zbl0895.47036
  9. [9] Bénilan Ph., Crandall M.G., Sacks P., Some L 1 existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions, Appl. Math. Optim.17 (3) (1988) 203-224. Zbl0652.35043MR922980
  10. [10] Boccardo L., Gallouët Th., Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations17 (1992) 641-655. Zbl0812.35043MR1163440
  11. [11] Brezis H., Problémes unilatéraux, J. Math. Pures Appl.51 (1972) 1-168. Zbl0237.35001MR428137
  12. [12] Brezis H., Opérateur Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, Oxford Univ. Press, Oxford, 1984. 
  13. [13] Crandall M.G., An introduction to evolution governed by accretive operators, in: Cesari L., (Eds.), Dynamical System, An International Symposium, vol. 1, Academic Press, New York, 1976, pp. 131-165, Dekker, New York, 1991. Zbl0339.35049MR636953
  14. [14] Crank J., Free and Moving Boundary Problems, North-Holland, Amsterdam, 1977. 
  15. [15] DiBenedetto E., Friedman A., The ill-posed Hele–Shaw model and the Stefan problem for supercooler water, Trans. Amer. Math. Soc.282 (1984) 183-204. Zbl0621.35102
  16. [16] Duvaux G., Lions J.L., Inequalities in Mechanics and Physiscs, Springer-Verlag, 1976. Zbl0331.35002MR600341
  17. [17] Elliot C.M., Janosky V., A variational inequality approach to the Hele–Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburg Sect. A88 (1981) 93-107. Zbl0455.76043
  18. [18] Igbida N., Kirane M., A degenerate diffusion problem with dynamical boundary conditions, Math. Ann.323 (2) (2002) 377-396. Zbl1001.35072MR1913047
  19. [19] N. Igbida, The Hele–Shaw problem with dynamical boundary conditions, Preprint. Zbl1127.35023
  20. [20] N. Igbida, Nonlinear heat equation with fast/logarithmic diffusion, Preprint. 
  21. [21] Kinderlehrer D., Stampacchia G., An Introduction to Variational Inequalities and their Applications, Pure Appl. Math., vol. 88, Academic Press Inc., New York, 1980. Zbl0457.35001MR567696
  22. [22] Lieberman G.M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal.12 (1988) 1203-1219. Zbl0675.35042MR969499
  23. [23] Lions J.L., Quelques méthodes de résolution de problémes aux limites non linéaires, Dunod–Gauthier-Vilars, Paris, 1968. Zbl0189.40603

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.