On the approximation of elliptic operators with discontinuous coefficients

William H. Mc Connell

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1976)

  • Volume: 3, Issue: 1, page 121-137
  • ISSN: 0391-173X

How to cite

top

Mc Connell, William H.. "On the approximation of elliptic operators with discontinuous coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.1 (1976): 121-137. <http://eudml.org/doc/83708>.

@article{McConnell1976,
author = {Mc Connell, William H.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {121-137},
publisher = {Scuola normale superiore},
title = {On the approximation of elliptic operators with discontinuous coefficients},
url = {http://eudml.org/doc/83708},
volume = {3},
year = {1976},
}

TY - JOUR
AU - Mc Connell, William H.
TI - On the approximation of elliptic operators with discontinuous coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1976
PB - Scuola normale superiore
VL - 3
IS - 1
SP - 121
EP - 137
LA - eng
UR - http://eudml.org/doc/83708
ER -

References

top
  1. [1] R. Courant - D. Hilbert, Methods of Mathematical Physics, Volume I, Interscience Publishers, Inc., New York, 1953. Zbl0051.28802MR65391
  2. [2] L. Gärding, Dirichlet's problem for linear elliptic partial differential equations, Math. Scand., 1 (1953), pp. 55-72. Zbl0053.39101MR64979
  3. [3] G. Fichera, Existence Theorems in Elasticity, Handbuch der Physik, Volume VIa/2, ed. C. TRUESDELL, Springer-Verlag, Berlin, 1972. 
  4. [4] M.E. Gurtin, The Theory of Linear Elasticity, Handbuch der Physik, Volume VIa/2, ed. C. TRUESDELL, Springer-Verlag, Berlin, 1972. 
  5. [5] L.P. Khoroshun, Relationships between stresses and deformations in lamellar media, Soviet Applied Mechanics, 2 (1966), pp. 14-17. 
  6. [6] O.A. Ladyzhenskaya - N.N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Trans. ed. L. EHRENPREIS, Academic Press, New York, 1968. Zbl0164.13002MR244627
  7. [7] A. Marino - S. Spagnolo, Un tipo di approssimazione dell'operatore Σ ijDi(aij(x)Dj) con operatori Σ jDj(β(x)Dj), Ann. Scuola Norm. Sup. Pisa, 23 (1969), pp. 657-673. Zbl0187.35305
  8. [8] N.J. Pagano, The role of effective moduli in the elastic analysis of composite laminates, Composite Materials, eds. L. J. BROUTMAN - R. H. KROCK, Volume 2: Mechanics of Composite Materials, ed. G. P. SENDECKYJ, Academic Press, New York, 1974. 
  9. [9] N.J. Pagano, Exact moduli of anisotropic laminates, Composite Materials, eds. L. J. BROUTMAN - R. H. KROCK, Volume 22: Mechanics of Composite Materials, ed. G. P. SENDECKYJ, Academic Press, New York, 1974. 
  10. [10] R. Rellich, Ein Satz über Mittleve Konvergenz, Nachr. Ges. Wissen. Göttingen, Math. Phys., Kl., (1930), pp. 30-35. Zbl56.0224.02JFM56.0224.02
  11. [11] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Scuola Norm. Sup. Pisa, 22 (1968), pp. 571-597. Zbl0174.42101MR240443
  12. [12] S. Timoshenko - J.N. Goodier, Theory of Elasticity, McGraw-Hill Book Co., New York, 1951. Zbl0045.26402MR45547

NotesEmbed ?

top

You must be logged in to post comments.