A local approach to some non-linear evolution equations of hyperbolic type

C. Parenti; F. Strocchi; G. Velo

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1976)

  • Volume: 3, Issue: 3, page 443-500
  • ISSN: 0391-173X

How to cite

top

Parenti, C., Strocchi, F., and Velo, G.. "A local approach to some non-linear evolution equations of hyperbolic type." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.3 (1976): 443-500. <http://eudml.org/doc/83727>.

@article{Parenti1976,
author = {Parenti, C., Strocchi, F., Velo, G.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {443-500},
publisher = {Scuola normale superiore},
title = {A local approach to some non-linear evolution equations of hyperbolic type},
url = {http://eudml.org/doc/83727},
volume = {3},
year = {1976},
}

TY - JOUR
AU - Parenti, C.
AU - Strocchi, F.
AU - Velo, G.
TI - A local approach to some non-linear evolution equations of hyperbolic type
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1976
PB - Scuola normale superiore
VL - 3
IS - 3
SP - 443
EP - 500
LA - eng
UR - http://eudml.org/doc/83727
ER -

References

top
  1. [1] N. Bourbaki, Eléments de Mathématique. Espaces vectoriels topologiques, Hermann, Paris (1955). Zbl0066.35301
  2. [2] F. Browder, On non-linear wave equations, Math. Zeit., 80 (1962), pp. 249-264. Zbl0109.32102MR147769
  3. [3] J.M. Chadam, The classical equations in quantum field theory, Marseille preprint 75/P.691. MR411438
  4. [4] S. Coleman, Quantum Sine-Gordon equation as the massive Thirring model, Phys. Rev., D11 (1975), p. 2088. 
  5. [5] L.D. Faddeev, Quantization of Solitons, Lectures at the Institute for Advanced Study, Princeton, N. J., April 1975, and references therein. 
  6. [6] J. Frölich, Quantized « Sine-Gordon ) equation with a non-vanishing mass term in two space-time dimensions, Phys. Rev. Letters, 34 (1975), p. 833. MR421409
  7. [7] K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen, Math. Zeit., 77 (1961), pp. 295-308. Zbl0111.09105MR130462
  8. [8] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non lineaires, Dunod, Gauthier-Villars, Paris (1969). Zbl0189.40603MR259693
  9. [9] M. Reed, Higher order estimates and smoothness of solutions of non-linear wave equations, to appear in Proc. A.M.S. Zbl0309.35044
  10. [10] I. Segal, Non-linear semi-groups, Ann. Math., 78 (1963), pp. 339-364. Zbl0204.16004MR152908
  11. [11] W.A. Strauss, Non-linear scattering theory, in Scattering Theory in Mathematical Physics, Proceedings of the NATO Advanced Study Institute, Denver, 1973, J. A. LAVITA and J.-P. MARCHAND (Editors), D. Reidel, Dordrecht-Holland (1974), pp. 53-78. Zbl0297.35062
  12. [12] L.R. Volevic - B.P. Paneyakh, Certain spaces of generalized functions and embedding theorems, Russian Math. Surveys, 20 (1965), pp. 1-73. Zbl0135.16501
  13. [13] K. Yosida, Functional Analysis, Springer, Berlin (1966). 
  14. [14] G.B. Whitham, Linear and Non-Linear Waves, J. Wiley, New York (1974). Zbl0373.76001
  15. [15] A.S. Wightman, Partial differential equations and relativistic quantum field theory, Lectures in Differential Equations, vol. II, A. K. AZIZ (Editor), Van Nostrand, Princeton, N. J. (1969), pp. 1-52. Zbl0179.41902

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.