The global Cauchy problem for the non linear Klein-Gordon equation-II

J. Ginibre; G. Velo

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: 6, Issue: 1, page 15-35
  • ISSN: 0294-1449

How to cite

top

Ginibre, J., and Velo, G.. "The global Cauchy problem for the non linear Klein-Gordon equation-II." Annales de l'I.H.P. Analyse non linéaire 6.1 (1989): 15-35. <http://eudml.org/doc/78166>.

@article{Ginibre1989,
author = {Ginibre, J., Velo, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Cauchy problem; nonlinear Klein-Gordon equations; contraction method},
language = {eng},
number = {1},
pages = {15-35},
publisher = {Gauthier-Villars},
title = {The global Cauchy problem for the non linear Klein-Gordon equation-II},
url = {http://eudml.org/doc/78166},
volume = {6},
year = {1989},
}

TY - JOUR
AU - Ginibre, J.
AU - Velo, G.
TI - The global Cauchy problem for the non linear Klein-Gordon equation-II
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - 6
IS - 1
SP - 15
EP - 35
LA - eng
KW - Cauchy problem; nonlinear Klein-Gordon equations; contraction method
UR - http://eudml.org/doc/78166
ER -

References

top
  1. [1] J. Bergh and J. Löfström, Interpolation Spaces, Berlin-Heidelberg-New York, Springer, 1976. Zbl0344.46071MR482275
  2. [2] P. Brenner, On Lp-Lp, Estimates for the Wave Equation, Math. Z., Vol. 145, 1975, pp. 251-254. Zbl0321.35052MR387819
  3. [3] P. Brenner, On the Existence of Global Smooth Solutions of Certain Semi-Linear Hyperbolic Equations, Math. Z., Vol. 167, 1979, pp. 99-135. Zbl0388.35048MR534820
  4. [4] P. Brenner and W. VonWAHL, Global Classical Solutions of Non-Linear Wave Equations, Math. Z., Vol. 176, 1981, pp. 87-121. Zbl0457.35059MR606174
  5. [5] P. Brenner, Space-Times Means and Nonlinear Klein-Gordon Equations, Preprint. Zbl0546.35066
  6. [6] F.E. Browder, On Nonlinear Wave Equations, Math. Z., Vol. 80, 1962, pp. 249-264. Zbl0109.32102MR147769
  7. [7] J. Ginibre and G. Velo, The Global Cauchy Problem for the Nonlinear Klein-Gordon Equation, Math. Z., Vol. 189, 1985, pp. 487-505. Zbl0549.35108MR786279
  8. [8] R. Glassey and M. Tsutsumi, On Uniqueness of Weak Solutions to Semi-Linear Wave Equations, Commun. Partial Differ. Equations, Vol. 7, 1982, pp. 153-195. Zbl0503.35059MR646135
  9. [9] E. Heinz and W. VonWAHL, Zu einem Satz von F. E. Browder über nichtlineare Wellengleichungen, Math. Z., Vol. 141, 1975, pp. 33-45. Zbl0282.35068MR365257
  10. [10] K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen, Math. Z., Vol. 77, 1961, pp. 295-308. Zbl0111.09105MR130462
  11. [11] T. Kato, On Nonlinear Schrödinger Equations, Ann. I.H.P. (Phys. Theor.), Vol. 46, 1987, pp. 113-129. Zbl0632.35038MR877998
  12. [12] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris, Dunod - Gauthiers-Villars, 1969. Zbl0189.40603MR259693
  13. [13] B. Marshall, W. Strauss and S. Wainger, Lp-Lq Estimates for the Klein-Gordon Equation, J. Math. Pur. Appl., Vol. 59, 1980, pp. 417-440. Zbl0457.47040MR607048
  14. [14] C. Parenti, F. Strocchi and G. Velo, A Local Approach to Some Nonlinear Evolution Equations of Hyperbolic Type, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV, Ser. 3, 1976, pp. 443-500. Zbl0332.35040MR477483
  15. [15] H. Pecher, Lp-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen I, Math. Z., Vol. 150, 1976, pp. 159-183. Zbl0318.35054MR435604
  16. [16] H. Pecher, Ein nichtlinearer Interpolationssatz und seine Anwendung auf nichtlineare Wellengleichungen, Math. Z., Vol. 161, 1978, pp. 9-40. Zbl0384.35039MR499812
  17. [17] H. Pecher, Nonlinear Small Data Scaterring for the Wave and Klein-Gordon Equation, Math. Z., Vol. 185, 1984, pp. 261-270. Zbl0538.35063MR731347
  18. [18] H. PecherLow Energy Scattering for Nonlinear Klein-Gordon Equations, J. Funct. Anal., Vol. 63, 1985, pp. 101-122. Zbl0588.35061
  19. [19] J.C. Peral, Lp-Estimates for the Wave Equation, J. Funct. Anal., Vol. 36, 1980, pp. 114-145. Zbl0442.35017MR568979
  20. [20] M. Reed, Abstract Nonlinear Wave Equations, Berhng-Heidelberg-New York, Springer, 1976. 
  21. [21] I.E. Segal, The Global Cauchy Problem for a Relativistic Scalar Field with Power Interaction, Bull. Soc. Math. Fr., Vol. 91, 1963, pp. 129-135. Zbl0178.45403MR153967
  22. [22] 1. E. Segal, Nonlinear Semigroups, Ann. Math., Vol. 78, 1963, pp. 339-364. Zbl0204.16004
  23. [23] I.E. Segal, Space-Time Decay for Solutions of Wave Equations, Adv. Math., Vol. 22, 1976, p. 305-311. Zbl0344.35058MR492892
  24. [24] W. Strauss, Decay and Asymptotics for ⊑u=f(u), J. Funct. Anal., Vol. 2, 1968, pp. 409-457. Zbl0182.13602MR233062
  25. [25] W. Strauss, On Weak Solutions of Semilinear Hyperbolic Equations, An. Acad. Bras. Cienc., Vol. 42, 1970, pp. 645-651. Zbl0217.13104MR306715
  26. [26] W. Strauss, Nonlinear Scattering Theory at Low Energy, J. Funct. Anal., Vol. 41, 1981, pp. 110-133. Ibid., Vol. 43, 1981, pp. 281-293. Zbl0466.47006MR614228
  27. [27] R. Strichartz, Convolutions with Kernels Having Singularities on a Sphere, Trans. Amer. Math. Soc., Vol. 148, 1970, pp. 461-470. Zbl0199.17502MR256219
  28. [28] R. Strichartz, Restrictions of Fourier Transforms to Quadratic Surfaces and Decay of Solutions of Wave Equations, Duke Math. J., Vol. 44, 1977, pp. 705-714. Zbl0372.35001MR512086
  29. [29] H. Triebel, Theory of Function Spaces, Basel, Birkhäuser, 1983. Zbl0546.46027
  30. [30] W. Von Wahl, Klassische Lösungen nichtlinearer Wellengleichungen im Grossen, Math. Z., Vol. 112, 1969, pp. 241-279. Zbl0177.36602MR280892
  31. [31] W. Von Wahl, Uber nichtlineare Wellengleichungen mit zeitabhängigem elliptischem Hauptteil, Math. Z., Vol. 142, 1975, pp. 105-120. Zbl0299.35064MR367470

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.