Leray endomorphisms and cone maps

Gilles Fournier; Heinz-Otto Peitgen

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1978)

  • Volume: 5, Issue: 1, page 149-179
  • ISSN: 0391-173X

How to cite

top

Fournier, Gilles, and Peitgen, Heinz-Otto. "Leray endomorphisms and cone maps." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.1 (1978): 149-179. <http://eudml.org/doc/83773>.

@article{Fournier1978,
author = {Fournier, Gilles, Peitgen, Heinz-Otto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {generalizd lefschetz number; leray endomorphisms; fixed point index; cone maps; condensing mapping; frechet differentiable mapping},
language = {eng},
number = {1},
pages = {149-179},
publisher = {Scuola normale superiore},
title = {Leray endomorphisms and cone maps},
url = {http://eudml.org/doc/83773},
volume = {5},
year = {1978},
}

TY - JOUR
AU - Fournier, Gilles
AU - Peitgen, Heinz-Otto
TI - Leray endomorphisms and cone maps
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1978
PB - Scuola normale superiore
VL - 5
IS - 1
SP - 149
EP - 179
LA - eng
KW - generalizd lefschetz number; leray endomorphisms; fixed point index; cone maps; condensing mapping; frechet differentiable mapping
UR - http://eudml.org/doc/83773
ER -

References

top
  1. [1] F.E. Browder, Another generalization of the Schauder fixed point theorem, Duke Math. J., 32 (1965), pp. 399-406. Zbl0128.35901MR203718
  2. [2] F.E. Browder, A further generalization of the Schauder fixed point theorem, Duke Math. J., 32 (1965), pp. 575-578. Zbl0137.32601MR203719
  3. [3] G. Darbo, Punti uniti in trasformazioni a condominio non compatto, Rend. Sem. Mat. Univ. Padova, 24 (1955), pp. 84-92. Zbl0064.35704MR70164
  4. [4] J. Eells - G. Fournier, La théorie des points fixes des applications a itérée condensante, Journées Geom. dimens. infinie (1975 - Lyon), Bull. Soc. math. France, Memoire46 (1976), pp. 91-120. Zbl0335.58006MR426043
  5. [5] C.C. Fenske - H.-O. Peitgen, On fixed points of zero index in asymptotic fixed point theory, Pacific J. Math., 66 (1976), pp. 391-410. Zbl0344.55006MR488034
  6. [6] G. Fournier, Généralisations du théorème de Lefschetz pour des espaces non compacts, I, II, III, Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys., 23 (1973), pp. 693-711. MR377862
  7. [7] G. Fournier - A. Granas, The Lefschetz fixed point theorem for some classes of non-metrizable spaces, J. Math. pures et appl., 52 (1973), pp. 271-284. Zbl0294.54034MR339116
  8. [8] G. Fournier - H.-O. Peitgen, On some fixed point principles for cones in linear normed spaces, Math. Ann., 225 (1977), pp. 205-218. Zbl0325.47039MR433268
  9. [9] A. Granas, Topics in the fixed point theory, Lecture Notes, 1970. 
  10. [10] A. Granas, The Leray-Schauder index and the fixed point theory for arbitrary ANR's, Bull. Soc. math. France, 100 (1972), pp. 209-228. Zbl0236.55004MR309102
  11. [11] K. Kuratowski, Sur les espaces complets, Found. Math., 15 (1930), pp. 301-309. Zbl56.1124.04JFM56.1124.04
  12. [12] M.A. Krasnosel'ski, Fixed points of cone-compressing and cone-extending operators, Soviet Math. Dokl., 1 (1960), pp. 1285-1288. Zbl0098.30902MR131158
  13. [13] J. Leray, Théorie des points fixes: indice total et nombre de Lefsehetz, Bull. Soc. math. France, 87 (1959), pp. 221-233. Zbl0093.36702MR143202
  14. [14] R.D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl., 89 (1971), pp. 217-258. Zbl0226.47031MR312341
  15. [15] R.D. Nussbaum, Some asymptotic fixed point theorems, Trans. Amer. Math. Soc., 171 (1972), pp. 349-375. Zbl0256.47040MR310719
  16. [16] R.D. Nussbaum, Periodic solutions of some nonlinear, autonomous functional differential equations, II, J. Diff. Eq., 14 (1973), pp. 360-394. Zbl0311.34087MR372370
  17. [17] R.D. Nussbaum, Periodic solutions of some nonlinear, autonomous functional differential equations, Ann. Mat. Pura Appl., 101 (1974), pp. 263-306. Zbl0323.34061MR361372
  18. [18] R.D. Nussbaum, Generalizing the fixed point index, Math. Ann., 228 (1977), pp. 259-278. Zbl0365.58005MR440587
  19. [19] H.-O. Peitgen, On continua of solutions for functional differential equations (to appear in Rocky Mountain J. Math.). Zbl0374.47035MR486922
  20. [20] H.H. Schaefer, Topological Vector Spaces, Springer-Verlag, New York, 1971. Zbl0212.14001MR342978
  21. [21] G.T. Whyburn, Topological Analysis, Princeton University Press, Princeton, N.J., 1958. Zbl0080.15903MR99642

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.