Leray endomorphisms and cone maps
Gilles Fournier; Heinz-Otto Peitgen
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1978)
- Volume: 5, Issue: 1, page 149-179
- ISSN: 0391-173X
Access Full Article
topHow to cite
topFournier, Gilles, and Peitgen, Heinz-Otto. "Leray endomorphisms and cone maps." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.1 (1978): 149-179. <http://eudml.org/doc/83773>.
@article{Fournier1978,
author = {Fournier, Gilles, Peitgen, Heinz-Otto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {generalizd lefschetz number; leray endomorphisms; fixed point index; cone maps; condensing mapping; frechet differentiable mapping},
language = {eng},
number = {1},
pages = {149-179},
publisher = {Scuola normale superiore},
title = {Leray endomorphisms and cone maps},
url = {http://eudml.org/doc/83773},
volume = {5},
year = {1978},
}
TY - JOUR
AU - Fournier, Gilles
AU - Peitgen, Heinz-Otto
TI - Leray endomorphisms and cone maps
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1978
PB - Scuola normale superiore
VL - 5
IS - 1
SP - 149
EP - 179
LA - eng
KW - generalizd lefschetz number; leray endomorphisms; fixed point index; cone maps; condensing mapping; frechet differentiable mapping
UR - http://eudml.org/doc/83773
ER -
References
top- [1] F.E. Browder, Another generalization of the Schauder fixed point theorem, Duke Math. J., 32 (1965), pp. 399-406. Zbl0128.35901MR203718
- [2] F.E. Browder, A further generalization of the Schauder fixed point theorem, Duke Math. J., 32 (1965), pp. 575-578. Zbl0137.32601MR203719
- [3] G. Darbo, Punti uniti in trasformazioni a condominio non compatto, Rend. Sem. Mat. Univ. Padova, 24 (1955), pp. 84-92. Zbl0064.35704MR70164
- [4] J. Eells - G. Fournier, La théorie des points fixes des applications a itérée condensante, Journées Geom. dimens. infinie (1975 - Lyon), Bull. Soc. math. France, Memoire46 (1976), pp. 91-120. Zbl0335.58006MR426043
- [5] C.C. Fenske - H.-O. Peitgen, On fixed points of zero index in asymptotic fixed point theory, Pacific J. Math., 66 (1976), pp. 391-410. Zbl0344.55006MR488034
- [6] G. Fournier, Généralisations du théorème de Lefschetz pour des espaces non compacts, I, II, III, Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys., 23 (1973), pp. 693-711. MR377862
- [7] G. Fournier - A. Granas, The Lefschetz fixed point theorem for some classes of non-metrizable spaces, J. Math. pures et appl., 52 (1973), pp. 271-284. Zbl0294.54034MR339116
- [8] G. Fournier - H.-O. Peitgen, On some fixed point principles for cones in linear normed spaces, Math. Ann., 225 (1977), pp. 205-218. Zbl0325.47039MR433268
- [9] A. Granas, Topics in the fixed point theory, Lecture Notes, 1970.
- [10] A. Granas, The Leray-Schauder index and the fixed point theory for arbitrary ANR's, Bull. Soc. math. France, 100 (1972), pp. 209-228. Zbl0236.55004MR309102
- [11] K. Kuratowski, Sur les espaces complets, Found. Math., 15 (1930), pp. 301-309. Zbl56.1124.04JFM56.1124.04
- [12] M.A. Krasnosel'ski, Fixed points of cone-compressing and cone-extending operators, Soviet Math. Dokl., 1 (1960), pp. 1285-1288. Zbl0098.30902MR131158
- [13] J. Leray, Théorie des points fixes: indice total et nombre de Lefsehetz, Bull. Soc. math. France, 87 (1959), pp. 221-233. Zbl0093.36702MR143202
- [14] R.D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl., 89 (1971), pp. 217-258. Zbl0226.47031MR312341
- [15] R.D. Nussbaum, Some asymptotic fixed point theorems, Trans. Amer. Math. Soc., 171 (1972), pp. 349-375. Zbl0256.47040MR310719
- [16] R.D. Nussbaum, Periodic solutions of some nonlinear, autonomous functional differential equations, II, J. Diff. Eq., 14 (1973), pp. 360-394. Zbl0311.34087MR372370
- [17] R.D. Nussbaum, Periodic solutions of some nonlinear, autonomous functional differential equations, Ann. Mat. Pura Appl., 101 (1974), pp. 263-306. Zbl0323.34061MR361372
- [18] R.D. Nussbaum, Generalizing the fixed point index, Math. Ann., 228 (1977), pp. 259-278. Zbl0365.58005MR440587
- [19] H.-O. Peitgen, On continua of solutions for functional differential equations (to appear in Rocky Mountain J. Math.). Zbl0374.47035MR486922
- [20] H.H. Schaefer, Topological Vector Spaces, Springer-Verlag, New York, 1971. Zbl0212.14001MR342978
- [21] G.T. Whyburn, Topological Analysis, Princeton University Press, Princeton, N.J., 1958. Zbl0080.15903MR99642
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.