Variational theory of set-valued Hammerstein operators in Banach function spaces. The eigenvalue problem

Charles V. Coffman

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1978)

  • Volume: 5, Issue: 4, page 633-655
  • ISSN: 0391-173X

How to cite

top

Coffman, Charles V.. "Variational theory of set-valued Hammerstein operators in Banach function spaces. The eigenvalue problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.4 (1978): 633-655. <http://eudml.org/doc/83796>.

@article{Coffman1978,
author = {Coffman, Charles V.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Set-Valued Hammerstein Integral Equations; Banach Function Spaces; Generalized Eigenvalue Problem; Convex Function; Lusternik-Schnirelman Theory; Subdifferential Function},
language = {eng},
number = {4},
pages = {633-655},
publisher = {Scuola normale superiore},
title = {Variational theory of set-valued Hammerstein operators in Banach function spaces. The eigenvalue problem},
url = {http://eudml.org/doc/83796},
volume = {5},
year = {1978},
}

TY - JOUR
AU - Coffman, Charles V.
TI - Variational theory of set-valued Hammerstein operators in Banach function spaces. The eigenvalue problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1978
PB - Scuola normale superiore
VL - 5
IS - 4
SP - 633
EP - 655
LA - eng
KW - Set-Valued Hammerstein Integral Equations; Banach Function Spaces; Generalized Eigenvalue Problem; Convex Function; Lusternik-Schnirelman Theory; Subdifferential Function
UR - http://eudml.org/doc/83796
ER -

References

top
  1. [1] H. Amann, Lyusternik-Schnirelman theory and non-linear eigenvalue problems, Math. Ann., 199 (1972), pp. 55-72. Zbl0233.47049MR350536
  2. [2] H. Amann, Hammersteinsche Gleichungen mit kompakten Kernen, Math. Ann., 186 (1970), pp. 334-340. Zbl0185.22202MR278138
  3. [3] C. Berge, Espaces topologiques, fonctions multivoques, Dunod, Paris, 1959. (English translation: Topological Spaces including a Treatment of Multi-valued Functions, Vector Spaces and Convexity, Macmillan, New York, 1963). Zbl0088.14703MR105663
  4. [4] F.E. Browder - C.P. Gupta, Monotone operators and nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc., 75 (1969), pp. 1347-1353. Zbl0193.11204MR250141
  5. [5] C.V. Coffman, A minimum-maximum principle for a class of non-linear integral equations, J. Analyse Math., 22 (1969), pp. 391-418. Zbl0179.15601MR249983
  6. [6] C.V. Coffman, Spectral theory of monotone Hammerstein operators, Pacific J. Math., 36 (1971), pp. 303-322. Zbl0212.46803MR281067
  7. [7] C.V. Coffman, Lyusternik-Schnirelman theory and eigenvalue problems for monotone potential operators, J. Functional Analysis, 14 (1973), pp. 237-252. Zbl0264.58006MR344955
  8. [8] M.M. Day, On the basis problem in normed spaces, Proc. Amer. Math. Soc., 13 (1962), pp. 655-662. Zbl0109.33601MR137987
  9. [9] J.P. Dias, Un théorème de Sturm-Liouville pour une classe d'opèrateurs non linéaires maximaux monotones, J. Math. Anal. Appl., 47 (1974), pp. 400-405. Zbl0286.47032MR367737
  10. [10] J.P. Dias - J. Hernandez, A Sturm-Liouville for some odd multivalued maps, Proc. Amer. Math. Soc., 53 (1975), pp. 72-74. Zbl0285.47037MR377632
  11. [11] I. Ekeland - R. Temam, Analyse Convexe et Problèmes Variationnels, Dunod, Paris, 1974. Zbl0281.49001MR463993
  12. [12] J.W. Jaworowski, Theorems on antipodes for multi-valued mappings and a fixed point theorem, Bull. Acad. Polon. Sci., Cl. III, 4 (1956), pp. 187-192. Zbl0074.38305MR79270
  13. [13] W.A.J. Luxemburg, Banach function spaces (Thesis, Delft), Assen, The Netherlands. Zbl0068.09204MR72440
  14. [14] W.A.J. Luxembuxg - A.C. Zaanen, Notes on Banach function spaces, Note I, Proc. Acad. Sci. Amsterdam (Indag. Math.), A66 (1963), pp. 135-147. 
  15. [15] W.A.J. Luxemburg - A.C. Zaanen, Compactness of integral operators in Banach function spaces, Math. Ann,. 149 (1963), pp. 150-180. Zbl0106.30804MR145374
  16. [16] M.A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964. MR159197
  17. [17] J.J. Moreau, Semi-continuité du sous-gradient d'une fonctionelle, C. R. Acad. Sci. Paris Ser. A-B, 260 (1965), pp. 1067-1070. Zbl0136.12102MR173936
  18. [18] V.R. Portnov, A contibution to the theory of Orlicz spaces generated by variable N-functions, Dokl. Akad. Nauk SSSR, 175 (1967), pp. 296-299; Soviet Math. Dokl., 8 (1967), pp. 857-860. Zbl0162.17901MR218884
  19. [19] R.T. Rockafellar, Integrals which are convex functionals II, Pacific J. Math., 39 (1971), pp. 439-469. Zbl0236.46031MR310612

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.