Variational theory of set-valued Hammerstein operators in Banach function spaces. The eigenvalue problem
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1978)
- Volume: 5, Issue: 4, page 633-655
- ISSN: 0391-173X
Access Full Article
topHow to cite
topCoffman, Charles V.. "Variational theory of set-valued Hammerstein operators in Banach function spaces. The eigenvalue problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.4 (1978): 633-655. <http://eudml.org/doc/83796>.
@article{Coffman1978,
author = {Coffman, Charles V.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Set-Valued Hammerstein Integral Equations; Banach Function Spaces; Generalized Eigenvalue Problem; Convex Function; Lusternik-Schnirelman Theory; Subdifferential Function},
language = {eng},
number = {4},
pages = {633-655},
publisher = {Scuola normale superiore},
title = {Variational theory of set-valued Hammerstein operators in Banach function spaces. The eigenvalue problem},
url = {http://eudml.org/doc/83796},
volume = {5},
year = {1978},
}
TY - JOUR
AU - Coffman, Charles V.
TI - Variational theory of set-valued Hammerstein operators in Banach function spaces. The eigenvalue problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1978
PB - Scuola normale superiore
VL - 5
IS - 4
SP - 633
EP - 655
LA - eng
KW - Set-Valued Hammerstein Integral Equations; Banach Function Spaces; Generalized Eigenvalue Problem; Convex Function; Lusternik-Schnirelman Theory; Subdifferential Function
UR - http://eudml.org/doc/83796
ER -
References
top- [1] H. Amann, Lyusternik-Schnirelman theory and non-linear eigenvalue problems, Math. Ann., 199 (1972), pp. 55-72. Zbl0233.47049MR350536
- [2] H. Amann, Hammersteinsche Gleichungen mit kompakten Kernen, Math. Ann., 186 (1970), pp. 334-340. Zbl0185.22202MR278138
- [3] C. Berge, Espaces topologiques, fonctions multivoques, Dunod, Paris, 1959. (English translation: Topological Spaces including a Treatment of Multi-valued Functions, Vector Spaces and Convexity, Macmillan, New York, 1963). Zbl0088.14703MR105663
- [4] F.E. Browder - C.P. Gupta, Monotone operators and nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc., 75 (1969), pp. 1347-1353. Zbl0193.11204MR250141
- [5] C.V. Coffman, A minimum-maximum principle for a class of non-linear integral equations, J. Analyse Math., 22 (1969), pp. 391-418. Zbl0179.15601MR249983
- [6] C.V. Coffman, Spectral theory of monotone Hammerstein operators, Pacific J. Math., 36 (1971), pp. 303-322. Zbl0212.46803MR281067
- [7] C.V. Coffman, Lyusternik-Schnirelman theory and eigenvalue problems for monotone potential operators, J. Functional Analysis, 14 (1973), pp. 237-252. Zbl0264.58006MR344955
- [8] M.M. Day, On the basis problem in normed spaces, Proc. Amer. Math. Soc., 13 (1962), pp. 655-662. Zbl0109.33601MR137987
- [9] J.P. Dias, Un théorème de Sturm-Liouville pour une classe d'opèrateurs non linéaires maximaux monotones, J. Math. Anal. Appl., 47 (1974), pp. 400-405. Zbl0286.47032MR367737
- [10] J.P. Dias - J. Hernandez, A Sturm-Liouville for some odd multivalued maps, Proc. Amer. Math. Soc., 53 (1975), pp. 72-74. Zbl0285.47037MR377632
- [11] I. Ekeland - R. Temam, Analyse Convexe et Problèmes Variationnels, Dunod, Paris, 1974. Zbl0281.49001MR463993
- [12] J.W. Jaworowski, Theorems on antipodes for multi-valued mappings and a fixed point theorem, Bull. Acad. Polon. Sci., Cl. III, 4 (1956), pp. 187-192. Zbl0074.38305MR79270
- [13] W.A.J. Luxemburg, Banach function spaces (Thesis, Delft), Assen, The Netherlands. Zbl0068.09204MR72440
- [14] W.A.J. Luxembuxg - A.C. Zaanen, Notes on Banach function spaces, Note I, Proc. Acad. Sci. Amsterdam (Indag. Math.), A66 (1963), pp. 135-147.
- [15] W.A.J. Luxemburg - A.C. Zaanen, Compactness of integral operators in Banach function spaces, Math. Ann,. 149 (1963), pp. 150-180. Zbl0106.30804MR145374
- [16] M.A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964. MR159197
- [17] J.J. Moreau, Semi-continuité du sous-gradient d'une fonctionelle, C. R. Acad. Sci. Paris Ser. A-B, 260 (1965), pp. 1067-1070. Zbl0136.12102MR173936
- [18] V.R. Portnov, A contibution to the theory of Orlicz spaces generated by variable N-functions, Dokl. Akad. Nauk SSSR, 175 (1967), pp. 296-299; Soviet Math. Dokl., 8 (1967), pp. 857-860. Zbl0162.17901MR218884
- [19] R.T. Rockafellar, Integrals which are convex functionals II, Pacific J. Math., 39 (1971), pp. 439-469. Zbl0236.46031MR310612
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.