The obstacle problem for the biharmonic operator

Luis A. Caffarelli; Avner Friedman

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1979)

  • Volume: 6, Issue: 1, page 151-184
  • ISSN: 0391-173X

How to cite

top

Caffarelli, Luis A., and Friedman, Avner. "The obstacle problem for the biharmonic operator." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.1 (1979): 151-184. <http://eudml.org/doc/83803>.

@article{Caffarelli1979,
author = {Caffarelli, Luis A., Friedman, Avner},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Obstacle Problem; Biharmonic Operator; Free Boundary; Differential Inequalities; Regularity of Solutions},
language = {eng},
number = {1},
pages = {151-184},
publisher = {Scuola normale superiore},
title = {The obstacle problem for the biharmonic operator},
url = {http://eudml.org/doc/83803},
volume = {6},
year = {1979},
}

TY - JOUR
AU - Caffarelli, Luis A.
AU - Friedman, Avner
TI - The obstacle problem for the biharmonic operator
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1979
PB - Scuola normale superiore
VL - 6
IS - 1
SP - 151
EP - 184
LA - eng
KW - Obstacle Problem; Biharmonic Operator; Free Boundary; Differential Inequalities; Regularity of Solutions
UR - http://eudml.org/doc/83803
ER -

References

top
  1. [1] H. Brézis - G. Stampacchia, Remarks on some fourth order variational inequalities, Ann. Scuola Norm. Sup. Pisa, 4 (4) (1977), pp. 363-371. Zbl0422.35043MR481472
  2. [2] L. Carleson, Selected Topics on Exceptional Sets, Van Nostrand, Princeton, 1967. Zbl0189.10903MR225986
  3. [3] J. Frehse, Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung, Hamburg Univ. Math. Sem., Abhand., 36 (1971), pp. 140-149. Zbl0219.35029MR330754
  4. [4] J. Frehse, On the regularity of the solution of the biharmonic variational inequality, Manuscripta Math., 9 (1973), pp. 91-103. Zbl0252.35031MR324208
  5. [5] O.D. Kellogg, Foundations of Potential Theory, Dover Publications, New York, 1953. Zbl0053.07301
  6. [6] N.S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, Berlin, 1972. Zbl0253.31001MR350027
  7. [7] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
  8. [8] J.L. Lions - E. Magenes, Problèmes aux limites Non Homogènes et Applicacations, vol. 1, Dunod, Paris, 1968. Zbl0165.10801MR247243
  9. [9] J.L. Lions - G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), pp. 493-519. Zbl0152.34601MR216344
  10. [10] L. Schwartz, Théorie des Distributions, vol. 1, Herman, Paris, 1957. Zbl0037.07301MR107812
  11. [11] G. Stampacchia, Su una disequazione variazionale legata al comportamento elastoplastico delle travi appoggiate agli estremi, Boll. U.M.I., 11 (4) (1975), pp. 444-454. Zbl0317.49033MR408406
  12. [12] G. Cimatti, The constrained elastic beam, Meccanica, 8 (1973), pp. 119-129. Zbl0281.73032MR337110

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.