A regularity result for polyharmonic variational inequalities with thin obstacles

Bernhard Schild

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)

  • Volume: 11, Issue: 1, page 87-122
  • ISSN: 0391-173X

How to cite

top

Schild, Bernhard. "A regularity result for polyharmonic variational inequalities with thin obstacles." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.1 (1984): 87-122. <http://eudml.org/doc/83926>.

@article{Schild1984,
author = {Schild, Bernhard},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {thick obstacle problem; polyharmonic; thin obstacle problem},
language = {eng},
number = {1},
pages = {87-122},
publisher = {Scuola normale superiore},
title = {A regularity result for polyharmonic variational inequalities with thin obstacles},
url = {http://eudml.org/doc/83926},
volume = {11},
year = {1984},
}

TY - JOUR
AU - Schild, Bernhard
TI - A regularity result for polyharmonic variational inequalities with thin obstacles
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 1
SP - 87
EP - 122
LA - eng
KW - thick obstacle problem; polyharmonic; thin obstacle problem
UR - http://eudml.org/doc/83926
ER -

References

top
  1. [1] L. Caffarelli - A. Friedman, The obstacle problem for the biharmonic operator, Ann. Scuola Norm. Sup. Pisa, 6 (1979), pp. 151-184. Zbl0405.31007MR529478
  2. [2] J. Fréhse, Beiträge zum Regularitätsproblem bei Variationsungleichungen höherer Ordnung, Habilitationsschrift, Frankfurt a.M. (1970). 
  3. [3] J. Frehse, On the regularity of the solution of the biharmonic variational inequality, Manuscripta Math., 9 (1973), pp. 91-103. Zbl0252.35031MR324208
  4. [4] J. Frehse, On variational inequalities with lower dimensional obstacles, Preprint 114, 1976, SFB 72 Bonn University, Proceedings Soc. Math. Brasil. (1976). 
  5. [5] J. Frehse, On the smoothness of solutions of variational inequalities with obstacles, Proc. Semester Partial Diff. Eq., Banach Center, Warszawa (1978). Zbl0568.35009
  6. [6] D. Kinderlehrer - L. Nirenberg - J. Spruck, Regularity in elliptic free boundary problems. II: Equations of higher order, Ann. Scuola Norm. Sup. Pisa, 6 (1979), pp. 637-683. Zbl0425.35097MR563338
  7. [7] N.S. Landkof, Foundations of modern potential theory, Berlin - Heidelberg- New York: Springer (1972). Zbl0253.31001MR350027
  8. [8] H. Lewy, On a refinement of Evan's law in potential theory, Atti Accad. Naz. Lincei, VIII Ser., Rend. Cl. Sci. Fis. Math. Natur., 48 (1970), pp. 1-9. Zbl0217.39002MR274786
  9. [9] H. Lewy - G. Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math., 22 (1969), pp. 153-188. Zbl0167.11501MR247551
  10. [10] B.W. Schulze - G. Wildenhain, Methoden der Potentialtheorie fiir elliptische Differentialgleichungen beliebiger Ordnung, Basel-Stuttgart: Birkhäuser (1977). Zbl0366.35002MR499624
  11. [11] B. Schild, Über die lokale Beschränktheit der 2. Ableitungen der Lösungen einseitiger, innerer Hindernisprobleme für den polyharmonischen Operator, Diplomarbeit, Bonn (1981). 
  12. [12] B. Schild, Über die Regularität der Lösungen polyharmonischer Variationsungleichungen mit ein- und zweiseitigen dünnen Hindernissen, to appear. Zbl0561.73013MR757000

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.