On the envelope of regularity for solutions of homogeneous systems of linear partial differential operators

Aldo Andreotti; Mauro Nacinovich

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1979)

  • Volume: 6, Issue: 1, page 69-141
  • ISSN: 0391-173X

How to cite

top

Andreotti, Aldo, and Nacinovich, Mauro. "On the envelope of regularity for solutions of homogeneous systems of linear partial differential operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.1 (1979): 69-141. <http://eudml.org/doc/83808>.

@article{Andreotti1979,
author = {Andreotti, Aldo, Nacinovich, Mauro},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Levi's Condition; Linear Partial Differential Operators; Envelope Of Regularity; Logarithmic Distance; Overdetermined Systems with Constant Coefficients; Solutions of Homogeneous Systems; Domain of Regularity},
language = {eng},
number = {1},
pages = {69-141},
publisher = {Scuola normale superiore},
title = {On the envelope of regularity for solutions of homogeneous systems of linear partial differential operators},
url = {http://eudml.org/doc/83808},
volume = {6},
year = {1979},
}

TY - JOUR
AU - Andreotti, Aldo
AU - Nacinovich, Mauro
TI - On the envelope of regularity for solutions of homogeneous systems of linear partial differential operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1979
PB - Scuola normale superiore
VL - 6
IS - 1
SP - 69
EP - 141
LA - eng
KW - Levi's Condition; Linear Partial Differential Operators; Envelope Of Regularity; Logarithmic Distance; Overdetermined Systems with Constant Coefficients; Solutions of Homogeneous Systems; Domain of Regularity
UR - http://eudml.org/doc/83808
ER -

References

top
  1. [1] A. Andreotti - M. Nacinovich, Complexes of partial differential operators, Ann. Scuola Norm. Sup. Pisa, 3 (1976), pp. 553-621. Zbl0334.58015MR445557
  2. [2] A. Andreotti - M. Nacinovich, Analytic convexity (Some comments on an example of de Giorgi and Piccinini), Complex analysis and its applications, vol. II, Vienna (1976), pp. 25-37. Zbl0339.35016MR499714
  3. [3] N. Aronszajn, A unique continuation theorem for solution of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl., 36 (1957), pp. 235-249. Zbl0084.30402MR92067
  4. [4] T. Bonnesen - W. Fenchel, Theorie der Konvexen Körper, Springer, Berlin, 1934. Zbl0277.52001MR344997
  5. [5] H. Cartan - P. Thullen, Zur Theorie der Singularitaten der Funktionen mehrerer Veränderlichen: Regularitäts und Konvergenzbereiche, Math. Ann., 106 (1932), pp. 617-647. Zbl0004.35704MR1512777JFM58.0347.02
  6. [6] W. Gröbner, Moderne Algebraische Geometrie die Idealtheoretischen Grundlagen, Springer, Berlin, 1949. Zbl0033.12706MR34049
  7. [7] L. Hörmander, Linear partial differential operators, Springer, Berlin, 1963. Zbl0108.09301MR404822
  8. [8] L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, 1966. Zbl0138.06203MR203075
  9. [9] I.G. Petrowski, Sur l'analicité des solutions des systèmes d'equations différentielles, Mat. Sb. 5, 47 (1939), pp. 3-70. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.