Littlewood-Paley a priori estimates for parabolic equations with sub-Dini continuous coefficients

E. Fabes; S. Sroka; K.-O. Widman

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1979)

  • Volume: 6, Issue: 2, page 305-334
  • ISSN: 0391-173X

How to cite

top

Fabes, E., Sroka, S., and Widman, K.-O.. "Littlewood-Paley a priori estimates for parabolic equations with sub-Dini continuous coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.2 (1979): 305-334. <http://eudml.org/doc/83811>.

@article{Fabes1979,
author = {Fabes, E., Sroka, S., Widman, K.-O.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Littlewood-Paley a priori estimates; sub-Dini continuous coefficients; existence and uniqueness theorems; parabolic equations of heat type; elliptic operator; Cauchy data; integral condition; modulus of continuity},
language = {eng},
number = {2},
pages = {305-334},
publisher = {Scuola normale superiore},
title = {Littlewood-Paley a priori estimates for parabolic equations with sub-Dini continuous coefficients},
url = {http://eudml.org/doc/83811},
volume = {6},
year = {1979},
}

TY - JOUR
AU - Fabes, E.
AU - Sroka, S.
AU - Widman, K.-O.
TI - Littlewood-Paley a priori estimates for parabolic equations with sub-Dini continuous coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1979
PB - Scuola normale superiore
VL - 6
IS - 2
SP - 305
EP - 334
LA - eng
KW - Littlewood-Paley a priori estimates; sub-Dini continuous coefficients; existence and uniqueness theorems; parabolic equations of heat type; elliptic operator; Cauchy data; integral condition; modulus of continuity
UR - http://eudml.org/doc/83811
ER -

References

top
  1. [1] A. Benedek - A.P. Calderón - R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci., 48 (1962), pp. 356-365. Zbl0103.33402MR133653
  2. [2] S.D. Eidelman, On the fundamental solution of parabolic systems (in Russian), Math. Sb., 95 (1961), pp. 73-136. MR131071
  3. [3] E. Fabes, The initial value problem for parabolic equations with data in Lp(R n). Studia Math., 44 (1972), pp. 89-109. Zbl0238.35046MR328356
  4. [4] E.B. Fabes - N.M. Rivière, Systems of parabolic equations with uniformly continuous coefficients, J. Analyse Math., 17 (1966), pp. 305-335. Zbl0144.35203MR216137
  5. [5] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J., 1964. Zbl0144.34903MR181836
  6. [6] G.H. Hardy - J.E. Littlewood - G. Polya, Inequalities, Second edition, Cambridge, 1964. Zbl0634.26008MR46395
  7. [7] A.M. Il'in, On the fundamental solution for a parabolic equation, Soviet Mathematics Doklady (1962), pp. 1697-1700. Zbl0168.08204MR164154
  8. [8] T. Kato, Abstract evolution equations of parabolic type in Banach and Hilbert spaces, Nagoya Math. J. (1961), pp. 93-125. Zbl0114.06102MR143065
  9. [9] J.E. Lewis, Mixed estimates for singular integrals and an application to initial value problems in parabolic differential equations, Proceedings of Symposia in Pure Mathematics, vol. X (1967), pp. 218-231. Zbl0177.38604MR234130
  10. [10] V.P. Mihailov, On the boundary values of solutions of second order elliptic equations (in Russian), Mat. Sb., 100 (1976), pp. 5-13. MR410083
  11. [11] V.A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general type, Proceedings of the Steklov Institute of mathematics, Boundary value problems of mathematical physics III, edited by O. A. LADYžENSKAJA, Amer. Math. Soc., 1967. 
  12. [12] S. Sroka, The initial-Dirichlet problem for parabolic differential equations with uniformly continuous coefficients and data in Lp, Thesis, University of Minnesota, December 1975. 
  13. [13] E. Stein, Singular integrals and differentiability properties of functions, Princeton University, Princeton, 1970. Zbl0207.13501MR290095
  14. [14] D.W. Stroock - S.R.S. Varadhan, Diffusion processes with continuous coefficients I and II, Comm. Pure Appl. Math., 22 (1969), pp. 345-400 and 479-530. Zbl0175.44802MR253426
  15. [15] K.O. Widman, On the boundary behavior of solutions to a class of elliptic partial differential equations, Ark. Mat., 6 (1966), pp. 485-533. Zbl0166.37702MR219875

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.