A uniqueness theorem for nonstationary Navier-Stokes flow past an obstacle

John G. Heywood

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1979)

  • Volume: 6, Issue: 3, page 427-445
  • ISSN: 0391-173X

How to cite

top

Heywood, John G.. "A uniqueness theorem for nonstationary Navier-Stokes flow past an obstacle." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.3 (1979): 427-445. <http://eudml.org/doc/83816>.

@article{Heywood1979,
author = {Heywood, John G.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {a-priori estimates; three-dimensional; solenoidal functions},
language = {eng},
number = {3},
pages = {427-445},
publisher = {Scuola normale superiore},
title = {A uniqueness theorem for nonstationary Navier-Stokes flow past an obstacle},
url = {http://eudml.org/doc/83816},
volume = {6},
year = {1979},
}

TY - JOUR
AU - Heywood, John G.
TI - A uniqueness theorem for nonstationary Navier-Stokes flow past an obstacle
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1979
PB - Scuola normale superiore
VL - 6
IS - 3
SP - 427
EP - 445
LA - eng
KW - a-priori estimates; three-dimensional; solenoidal functions
UR - http://eudml.org/doc/83816
ER -

References

top
  1. [1] K.I. Babenko, On stationary solutions of the problem of flow past a body of a viscous incompressible fluid, Math. USSR-Sb., 20, no. 1 (1973), pp. 1-25. Zbl0285.76009
  2. [2] J.R. Cannon - G.H. Knightly, Some continuous dependence theorens for viscous fluid motions, SIAM J. Appl. Math., 18 (1970), pp. 627-640. Zbl0202.37202MR269967
  3. [3] J.R. Cannon - G.H. Knightly, A note on the Cauchy problem for the Navier-Stokes equations, SIAM J. Appl. Math., 18 (1970), pp. 641-644. Zbl0202.37203MR270004
  4. [4] R. Finn, An energy theorem for viscous fluid motions, Arch. Rational Mech. Anal., 6 (1960), pp. 371-381. Zbl0096.41303MR166497
  5. [5] R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems, Arch. Rational Mech. Anal., 19 (1965), pp. 363-406. Zbl0149.44606MR182816
  6. [6] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. Zbl0224.35002MR445088
  7. [7] D. Graffi, Sul teorema di unicità nella dinamica dei fluidi, Ann. Mat. Pura Appl., 50 (1960), pp. 379-388. Zbl0102.41103MR122198
  8. [8] J.G. Heywood, The exterior nonstationary problem for the Navier-Stokes equations, Acta Math., 129 (1972), pp. 11-34. Zbl0237.35074MR609550
  9. [9] J.G. Heywood, On nonstationary Stokes flow past an obstacle, Indiana Univ. Math. J., 24 (1974), pp. 271-284. Zbl0315.35074MR355376
  10. [10] J.G. Heywood, On some paradoxes concerning two-dimensional Stokes flow past an obstacle, Indiana Univ. Math. J., 24 (1974), pp. 443-450. Zbl0315.35075MR410123
  11. [11] J.G. Heywood, On uniqueness questions in the theory of viscous flow, Acta Math., 136 (1976), pp. 61-102. Zbl0347.76016MR425390
  12. [12] E. Hopf, Ein allgemeiner Endlichkeitssatz der Hydrodynamik, Math. Ann., 117 (1940-41), pp. 764-775. Zbl0024.13505MR5003JFM67.0842.02
  13. [13] G.H. Knightly, A Cauchy problem for the Navier-Stokes equations in Rn, SIAM J. Math. Anal., 3 (1972), pp. 506-511. Zbl0246.76021MR312093
  14. [14] G.H. Knightly, Some asymptotic properties of solutions of the Navier-Stokes equations, to appear in the Proceedings International Symposium on Dynamical Systems, Gainsville, 1976. Zbl0547.35099MR460929
  15. [15] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, II Ed., Gordon and Breach, New York, 1969. Zbl0184.52603MR254401
  16. [16] J. Leray, Etude de diverses équations integrales non linéaires et de quelques problèmes que pose l'Hydrodynamique, J. Math. Pures Appl., 9 (1933), pp. 1-82; Les problèmes non linéaires, Enseignement Math., 35 (1936), pp. 139-151. Zbl0006.16702
  17. [17] C.M. Ma, On square-summability and uniqueness questions concerning nonstationary Stokes flow in an exterior domain, to appear Arch. Rational Mech. Anal. Zbl0412.76026MR525220
  18. [18] J Nečas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967. MR227584
  19. [19] G. Prodi, Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie, Rend. Sem. Mat. Univ. Padova, 32 (1962), pp. 374-397. Zbl0108.28602MR189354
  20. [20] S. Rionero - G.P. Galdi, On the uniqueness of viscous fluid motions, Arch. Rational Mech. Anal., 62 (1976), pp. 295-301. Zbl0351.35070MR418634
  21. [21] M. Shinbrot - S. Kaniel, The initial value problem for the Navier-Stokes equations, Arch. Rational Mech. Anal., 21 (1966), pp. 270-285. Zbl0148.45504MR192215

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.