Existence of embedded solutions of Plateau's problem

Frederick J. Almgren; Leon Simon

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1979)

  • Volume: 6, Issue: 3, page 447-495
  • ISSN: 0391-173X

How to cite

top

Almgren, Frederick J., and Simon, Leon. "Existence of embedded solutions of Plateau's problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.3 (1979): 447-495. <http://eudml.org/doc/83817>.

@article{Almgren1979,
author = {Almgren, Frederick J., Simon, Leon},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {embedded solutions; Plateau's problem; minimal surface; varifold},
language = {eng},
number = {3},
pages = {447-495},
publisher = {Scuola normale superiore},
title = {Existence of embedded solutions of Plateau's problem},
url = {http://eudml.org/doc/83817},
volume = {6},
year = {1979},
}

TY - JOUR
AU - Almgren, Frederick J.
AU - Simon, Leon
TI - Existence of embedded solutions of Plateau's problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1979
PB - Scuola normale superiore
VL - 6
IS - 3
SP - 447
EP - 495
LA - eng
KW - embedded solutions; Plateau's problem; minimal surface; varifold
UR - http://eudml.org/doc/83817
ER -

References

top
  1. [AA] W.K. Allard - F.J. Almgren, Jr., The structure of stationary one dimensional manifolds with positive density, preprint. 
  2. [A1] H.W. Alt, Verzweigungspunkte von H-Flächen I, Math. Z., 127 (1972), pp. 333-362. Zbl0253.58007MR312404
  3. [A2] H.W. Alt, Verzweigungspunkte von H-Flächen II, Math. Ann., 201 (1973), pp. 33-55. Zbl0257.58005MR331195
  4. [AS] L.V. Ahlfors - L. Sario, Riemann Surfaces, Princeton University Press, 1960. Zbl0196.33801MR114911
  5. [AT] F.J. Almgren, Jr. - W.P. Thurston, Examples of unknotted curves which bound only surfaces of high genus with their convex hulls, Ann. of Math., 105 (1977), pp. 527-538. Zbl0353.53001MR442833
  6. [AW1] W.K. Allard, On the first variation of a varifold, Ann. of Math., 95 (1972), pp. 417-491. Zbl0252.49028MR307015
  7. [AW2] W.K. Allard, On the first variation of a varifold: boundary behaviour, Ann. of Math., 101 (1975), pp. 418-446. Zbl0319.49026MR397520
  8. [C] R. Courant, Dirichlet's Principle, Interscience, 1950. Zbl0040.34603MR36317
  9. [D] J. Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc., 33 (1931), pp. 263-321. Zbl0001.14102MR1501590
  10. [FH] H. Federer, Geometric measure theory, Springer-Verlag, 1969. Zbl0176.00801MR257325
  11. [G] R. Gulliver, Regularity of minimizing surfaces of prescribed mean curvature, Ann. of Math. (1973), pp. 275-305. Zbl0246.53053MR317188
  12. [GOR] R. Gulliver - R. Osserman - H. Royden, A theory of branched immersions of surfaces, Amer. J. Math., 95 (1973), pp. 750-812. Zbl0295.53002MR362153
  13. [GS1] R. Gulliver - J. Spruck, On embedded minimal surfaces, Ann. of Math., 103 (1976), pp. 331-347. Zbl0347.49033MR405217
  14. [GS2] R. Gulliver - J. Spruck, Correction to « On embedded minimal surfaces», Ann. of Math., 109 (1979), pp. 407-412. Zbl0398.49024MR528970
  15. [M] F. Morgan, Almost every curve in R3 bounds a unique area minimizing surface, Invent. Math., 45 (1978), pp. 253-297. Zbl0378.49028MR513662
  16. [MY] W.H. MeeksIII - S.T. Yau, The classical Plateau problem and the topology of 3-manifolds, Arch. Rational Mech. Anal. 
  17. [N] J.C.C. Nitsche, Contours bounding at least three solutions of Plateau's problem, Arch. Rational Mech. Anal., 30 (1968), pp. 1-11. Zbl0164.14201MR226515
  18. [O] R. Osserman, A proof of the regularity everywhere of the classical solution of Plateau's problem, Ann. of Math., 91 (1970), pp. 550-569. Zbl0194.22302MR266070
  19. [P] J. Pitts, Existence and regularity of minimal surfaces in Riemannian manifolds, Bull. Amer. Math. Soc., 82 (1976), pp. 503-504. Zbl0329.49029MR405219
  20. [R] T. Rado, The problem of least area and the problem of Plateau, Math. Z., 32 (1930), pp. 763-796. Zbl56.0436.01MR1545197JFM56.0436.01
  21. [TT] F. Tomi - A.J. Tromba, Extreme curves bound embedded minimal surfaces of the type of disc, Math. Z., 158 (1978), pp. 137-145. Zbl0353.53032MR486522

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.