Density and stability of Morse functions on a stratified space

Roberto Pignoni

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1979)

  • Volume: 6, Issue: 4, page 593-608
  • ISSN: 0391-173X

How to cite

top

Pignoni, Roberto. "Density and stability of Morse functions on a stratified space." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.4 (1979): 593-608. <http://eudml.org/doc/83822>.

@article{Pignoni1979,
author = {Pignoni, Roberto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {density and stability of Morse functions on a stratified space},
language = {eng},
number = {4},
pages = {593-608},
publisher = {Scuola normale superiore},
title = {Density and stability of Morse functions on a stratified space},
url = {http://eudml.org/doc/83822},
volume = {6},
year = {1979},
}

TY - JOUR
AU - Pignoni, Roberto
TI - Density and stability of Morse functions on a stratified space
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1979
PB - Scuola normale superiore
VL - 6
IS - 4
SP - 593
EP - 608
LA - eng
KW - density and stability of Morse functions on a stratified space
UR - http://eudml.org/doc/83822
ER -

References

top
  1. [1] R. Benedetti, Density of Morse functions on a complex space, Math. Ann.229 (1977), pp. 135-139. Zbl0354.32027MR457765
  2. [2] E. Brieskorn, Examples of singular normal complex spaces which are topological manifolds, Proc. Nat. Acad. Sci. U.S.A., 55 (1966), pp. 1395-1397. Zbl0144.45001MR198497
  3. [3] F. Bruhat - H. Whitney, Quelques propriétés fondamentales des ensembles analytiques-réels, Comment. Math. Helv., 33 (1959), pp. 132-160. Zbl0100.08101MR102094
  4. [4] H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull, Soc. Math. France, 85 (1957), pp. 77-99. Zbl0083.30502MR94830
  5. [5] H. Hironaka, Introduction to real-analytic sets and real-analytic maps, Istituto « L. Tonelli », Pisa, 1973. MR477121
  6. [6] M. Hirsch, Differential topology, Springer, 1976. Zbl0356.57001MR448362
  7. [7] F. Lazzfri, Morse theory on singular spaces, Astérisque7 et 8, 1973. Zbl0307.57014
  8. [8] S. Łojasiewicz, Ensembles semi-analytiques, Preprint I.H.E.S., 1965. 
  9. [9] J. Mather, Notes on topological stability, Lecture Notes, Harvard University, 1970. 
  10. [10] J. Mather, Stratifications and mappings, Proceedings of the Dynamical Systems Conference, Salvador, Brazil, July 1971, Academic Press. Zbl0286.58003MR368064
  11. [11] J. Milnor, Morse theory, Princeton University Press, 1963. Zbl0108.10401MR163331
  12. [12] R. Narasimhan, Introduction to the theory of analytic spaces, Springer, 1966. Zbl0168.06003MR217337
  13. [13] H. Whitney, Tangents to an analytic variety, Ann. of Math., 81 (1965), pp. 496-549 Zbl0152.27701MR192520

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.