A class of pseudo differential operators with multiple non-involutive characteristics

Maria Mascarello Rodino; Luigi Rodino

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1981)

  • Volume: 8, Issue: 4, page 575-603
  • ISSN: 0391-173X

How to cite

top

Mascarello Rodino, Maria, and Rodino, Luigi. "A class of pseudo differential operators with multiple non-involutive characteristics." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 8.4 (1981): 575-603. <http://eudml.org/doc/83869>.

@article{MascarelloRodino1981,
author = {Mascarello Rodino, Maria, Rodino, Luigi},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {pseudodifferential operators; multiple non-involutive characteristics; micro-hypoellipticity; Schwartz space; Meijer's G-functions; asymptotic integration},
language = {eng},
number = {4},
pages = {575-603},
publisher = {Scuola normale superiore},
title = {A class of pseudo differential operators with multiple non-involutive characteristics},
url = {http://eudml.org/doc/83869},
volume = {8},
year = {1981},
}

TY - JOUR
AU - Mascarello Rodino, Maria
AU - Rodino, Luigi
TI - A class of pseudo differential operators with multiple non-involutive characteristics
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1981
PB - Scuola normale superiore
VL - 8
IS - 4
SP - 575
EP - 603
LA - eng
KW - pseudodifferential operators; multiple non-involutive characteristics; micro-hypoellipticity; Schwartz space; Meijer's G-functions; asymptotic integration
UR - http://eudml.org/doc/83869
ER -

References

top
  1. [1] L. Boutet De Monvel, Hypoelliptic operators with double characteristics and related pseudo differential operators, Comm. Pure Appl. Math., 27 (1974), pp. 585-639. Zbl0294.35020MR370271
  2. [2] L. Boutet De Monvel - A. Grigis - B. Helffer, Parametrixes d'opérateurs pseudo-différentiels à caractéristiques multiples, Astérisque, 34-35 (1976), pp. 93-121. Zbl0344.32009MR493005
  3. [3] L. Boutet De Monvel - F. Trèves, On a class of pseudo differential operators with double characteristics, Invent. Math., 24 (1974), pp.1-34. Zbl0281.35083MR353064
  4. [4] Yu B. Egorov, Subelliptic operators, Uspekhi Mat. Nauk, 30 (1975), pp. 57-114; Russian Math. Surveys, 30 (1975), pp. 59-118. Zbl0318.35075MR410473
  5. [5] A. Gilioli - F. Trèves, An example in the solvability theory of linear PDE'sAmer. J. Math., 96 (1974), pp. 367-385. Zbl0308.35022MR355285
  6. [6] V.V. Grušin, On a class of hypoelliptic operators, Mat. Sb., 83 (1970), pp. 456-473; Math. USSR-Sb., 12 (1970), pp. 458-476. Zbl0252.35057MR279436
  7. [7] R.C. Gunning - H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc. (1965), Englewood Cliffs. Zbl0141.08601MR180696
  8. [8] B. Helffer - L. Rodino, Elliptic pseudo differential operators degenerate on a symplectic submanifold, Bull. Amer. Math. Soc., 82 (1976), pp. 619-622. Zbl0337.35020MR407435
  9. [9] B. Helffer - L. Rodino, Opérateurs différentiels ordinaires intervenant dans l'étude de l'hypoellipticité, Boll. Un. Mat. Ital., 14-B (1977), pp. 491-522. Zbl0358.58011MR460866
  10. [10] L. Hörmander, Pseudo differential operators and nonelliptic boundary value problem, Ann. of Math., 83 (1966), pp. 129-209. Zbl0132.07402MR233064
  11. [11] L. Hörmander, Fourier integral operators, I, Acta Math., 121 (1971), pp. 79-183. Zbl0212.46601MR388463
  12. [12] Y.L. Luke, The special functions and their approximations, Academic Press (1969), New York and London. Zbl0193.01701
  13. [13] M. Mascarello Rodino - L. Rodino, Two examples of pseudo differential operators with multiple characteristics, Boll. Un. Mat. Ital., 13-A (1976), pp. 391-398. Zbl0343.35017MR440185
  14. [14] A. Menikoff, Some examples of hypoelliptic partial differential equations, Math. Ann., 221 (1976), pp. 167-181. Zbl0323.35019MR481452
  15. [15] J. Nourrigat, Paramétrixes pour une classe d'opérateurs hypoelliptiques, Comm. Partial Diff. Equations, 3 (1978), pp. 407-441. Zbl0382.35014MR473491
  16. [16] C. Parenti - L. Rodino, Parametrices for a class of pseudo differential operators, I, II, Ann. Mat. Pura Appl., 125 (1980), pp.221-278. Zbl0406.35066MR605210
  17. [17] L. Rodino, Nonsolvability of a hygher order degenerate elliptic pseudo differential equation, Amer. J. Math., 102 (1980), pp. 1-12. Zbl0405.35076MR556885
  18. [18] Y. Sibuya, Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North-Holland (1975), Amsterdam. Zbl0322.34006MR486867
  19. [19] J. Sjöstrand, Parametrices for pseudo differential operators with multiple characteristics, Ark. Mat., 12 (1974), pp. 85-130. Zbl0317.35076MR352749
  20. [20] E.C. Titchmarsh, The theory of functions, Oxford Press (1939), Oxford. Zbl0022.14602MR197687JFM65.0302.01
  21. [21] F. Trèves, A new method of proof of the subelliptic estimates, Comm. Pure Appl. Math., 24 (1971), pp. 71-115. Zbl0206.11401MR290201
  22. [22] F.G. Tricomi, Funzioni speciali, Ed. Tirrenia (1965), Torino. 
  23. [23] K. Yamamoto, Parametrices for pseudo differential equations with double characteristics, Hokkaido Math. J., 5 (1976), pp. 280-301. Zbl0342.35059MR417562
  24. [24] B. Helffer - J. Nourrigat, Construction de paramétrixes pour une nouvelle classe d'opérateurs pseudodifférentiels, J. Differential Equations, 32 (1979), pp. 41-64. Zbl0409.35020MR532762
  25. [25] J. Nourrigat, Hypoellipticité et paramétrixes pour une classe d'opérateurs différentiels à caracteristiques multiples, Thèse d'état (1979). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.