A problem of transversal anisotropic ellipticity

Marco Mughetti

Rendiconti del Seminario Matematico della Università di Padova (2001)

  • Volume: 106, page 111-142
  • ISSN: 0041-8994

How to cite

top

Mughetti, Marco. "A problem of transversal anisotropic ellipticity." Rendiconti del Seminario Matematico della Università di Padova 106 (2001): 111-142. <http://eudml.org/doc/108558>.

@article{Mughetti2001,
author = {Mughetti, Marco},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {111-142},
publisher = {Seminario Matematico of the University of Padua},
title = {A problem of transversal anisotropic ellipticity},
url = {http://eudml.org/doc/108558},
volume = {106},
year = {2001},
}

TY - JOUR
AU - Mughetti, Marco
TI - A problem of transversal anisotropic ellipticity
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2001
PB - Seminario Matematico of the University of Padua
VL - 106
SP - 111
EP - 142
LA - eng
UR - http://eudml.org/doc/108558
ER -

References

top
  1. [1] L. Boutet De Monvel, Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure Appl. Math., 27 (1974), pp. 585-639. Zbl0294.35020MR370271
  2. [2] L. Boutet De Monvel - A. Grigis - B. Helffer, Paramétrixes d'opérateurs pseudo-différentiels à caractéristiques multiples, Astérisque, 34-35 (1976), pp. 93-121. Zbl0344.32009MR493005
  3. [3] C. Fefferman - D.H. Phong, Subelliptic Eigenvalue Problems, Harmonic analysis, Conf. in Honor A. Zygmund, Chicago1981, Vol. 2 (1983), pp. 590-606. Zbl0503.35071MR730094
  4. [4] A. Gilioli - F. TREVES, An example in the local solvability theory of linear PDE's, American Journal of Math., 24 (1974), pp. 366-384. Zbl0308.35022
  5. [5] A. Gilioli, A class of second-order evolution equations with double characteristics, Ann. Scuola Norm. Sup. Pisa Cl. Sci., IV Ser., 3 (1976), pp. 187-229. Zbl0327.35018MR437961
  6. [6] A. Grigis, Hypoellipticité et parametrix pour des opérateurs pseudodifferéntieles a caractéristiques doubles, Astérisque, 34-35 (1976), pp. 183-205. Zbl0344.35019MR488185
  7. [7] B. Helffer, Construction de paramétrixes pour des opérateurs pseudo-différentieles caractéristiques sur la réunion de deux cones lisses, Bull. Soc. math. France, Mémoire, 51-52 (1977), pp. 63-123. Zbl0374.35042MR460865
  8. [8] B. Helffer, Sur l'hypoellipticité des opérateurs pseudodifférentiels à caractéristiques multiples (perte de 3/2 dérivées), Bull. Soc. math. France, Mémoire, 51-52 (1977), 13-61. Zbl0374.35012MR460864
  9. [9] B. Helffer - J.F. Nourrigat, Construction de Paramétrixes pour une nouvelle Classe d'Opérateurs Pseudodifférentiels, J. Differential Equations, 32 (1979), pp. 41-64. Zbl0409.35020MR532762
  10. [10] B. Helffer - J.F. Nourrigat, Hypoellipticité maximale pour des opérateurs polynomes de champs de vecteurs, Birkhäuser (1985). Zbl0454.58019MR897103
  11. [11] B. Helffer, Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, 112 (1984). Zbl0541.35002MR743094
  12. [12] L. Hörmander, Fourier integral operators, I, Acta Math., 127 (1971), 79-183. Zbl0212.46601MR388463
  13. [13] L. Hörmander, TheAnalysis of Linear Partial Differential Operators, Vol. I-III, Springer-Verlag (1983/85). Zbl0601.35001
  14. [14] R. Lascar, Propagation des singularites et hypoellipticite pour des operateurs pseudo-differentiels a caracteristiques doubles, Comm. in Partial Differential Equations, 3 (1978), pp. 201-247. Zbl0391.35063MR492798
  15. [15] M. Mascarello - L. Rodino, A class of pseudodifferential operators with multiple non-involutive characteristics, Ann. Scuola Norm. Sup. Pisa, Ser. IV, 8 (1981), pp. 575-603. Zbl0441.35069MR656001
  16. [16] M. Mascarello - L. Rodino, Partial Differential Equations with Multiple Characteristics, Akademie Verlag, Berlin (1997). Zbl0888.35001MR1608649
  17. [17] A. Menikoff, SomeExamples of Hypoelliptic Partial Differential Equations, Math. Ann., 221 (1976), 167-181. Zbl0323.35019MR481452
  18. [18] C. Parenti - A. Parmeggiani, Some Remarks on Almost-Positivity of ψdo's, Boll. U.M.I., 1-B (1998), pp. 187-215. Zbl0908.35146
  19. [19] C. Parenti - A. Parmeggiani, A Generalization of Hörmander's Inequality-I, to appear in Comm. Partial Differ. Equations. Zbl0986.35146
  20. [20] L.P. Rothschild - E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), pp. 247-320. Zbl0346.35030MR436223
  21. [21] M.A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag (1987). Zbl0616.47040MR883081
  22. [22] F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. II, Plenum Press (1980). Zbl0453.47027MR597145

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.