Hypoelliptic and Gevrey hypoelliptic invariant differential operators on certain symmetric spaces

Paul Godin

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1982)

  • Volume: 9, Issue: 2, page 175-209
  • ISSN: 0391-173X

How to cite

top

Godin, Paul. "Hypoelliptic and Gevrey hypoelliptic invariant differential operators on certain symmetric spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 9.2 (1982): 175-209. <http://eudml.org/doc/83879>.

@article{Godin1982,
author = {Godin, Paul},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {invariant differential operators; symmetric spaces; Riemannian symmetric space of the noncompact type; Gevrey hypoellipticity},
language = {eng},
number = {2},
pages = {175-209},
publisher = {Scuola normale superiore},
title = {Hypoelliptic and Gevrey hypoelliptic invariant differential operators on certain symmetric spaces},
url = {http://eudml.org/doc/83879},
volume = {9},
year = {1982},
}

TY - JOUR
AU - Godin, Paul
TI - Hypoelliptic and Gevrey hypoelliptic invariant differential operators on certain symmetric spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1982
PB - Scuola normale superiore
VL - 9
IS - 2
SP - 175
EP - 209
LA - eng
KW - invariant differential operators; symmetric spaces; Riemannian symmetric space of the noncompact type; Gevrey hypoellipticity
UR - http://eudml.org/doc/83879
ER -

References

top
  1. [1] Adimurthi - S. Kumaresan, On the singular support of distributions and Fourier transforms on symmetric spaces, Ann. Scuola Norm. Sup. Pisa, serie IV, 6, no. 1 (1979), pp. 143-150. Zbl0447.43009MR529477
  2. [2] K.G. Andersson, Analyticity of fundamental solutions, Ark. Mat., 8, no. 9 (1969), pp. 73-81. Zbl0193.38103MR265734
  3. [3] Harish-Chandra, Spherical functions on a semisimple Lie group I, Amer. J. Math., 80 (1958), pp. 241-310. Zbl0093.12801MR94407
  4. [4] S. Helgason, Differential geometry and symmetric spaces, New York, Academic Press, 1962. Zbl0111.18101MR145455
  5. [5] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, New York, Academic Press, 1978. Zbl0451.53038MR514561
  6. [6] S Helgason, Fundamental solutions of invariant differential operators on symmetric spaces, Amer. J. Math., 86 (1964), pp. 565-601. Zbl0178.17001MR165032
  7. [7] S. Helgason, An analogue of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces, Math. Ann., 165 (1966), pp. 297-308. Zbl0178.17101MR223497
  8. [8] S. Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math., 5 (1970), pp. 1-154. Zbl0209.25403MR263988
  9. [9] S. Helgason, Analysis on Lie groups and homogeneous spaces, Conf. Board of the Math. Sci. Regional Conf. Ser. Math. no. 14, Amer. Math. Soc., Providence, R.I., 1972. Zbl0264.22010MR316632
  10. [10] S. Helgason, Functions on symmetric spaces, in: Proc. Symp. Pure Math., vol. 26: Harmonic analysis on homogeneous spaces, pp. 101-146, Amer. Math. Soc., Providence, R.I., 1973. Zbl0335.43009MR346429
  11. [11] S. Helgason, The surjectivity of invariant differential operators on symmetric spaces, I, Ann. of Math., 98 (1973), pp. 451-479. Zbl0274.43013MR367562
  12. [12] L. Hörmander, On the theory of general partial differential operators, Acta Math., 94 (1955), pp. 161-248. Zbl0067.32201MR76151
  13. [13] L. Hörmander, Linear partial differential operators, Berlin - Heidelberg - New York: Springer, 1963. Zbl0108.09301MR161012
  14. [14] L. Hörmander, Fourier integral operators I, Acta Math.127 (1971) pp. 79-183. Zbl0212.46601MR388463
  15. [15] L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., 24 (1971), pp. 671-704. Zbl0226.35019MR294849
  16. [16] J.L. Lions - E. Magenes, Non-homogeneous boundary value problems and applications III, Berlin - Heidelberg - New York: Springer, 1973. Zbl0251.35001MR350179
  17. [17] F. Treves, Linear partial differential equations with constant coefficients, New York, Gordon and Breach, 1966. Zbl0164.40602MR224958

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.