Microlocal analysis for spatially inhomogeneous pseudo differential operators

Luigi Rodino

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1982)

  • Volume: 9, Issue: 2, page 211-253
  • ISSN: 0391-173X

How to cite

top

Rodino, Luigi. "Microlocal analysis for spatially inhomogeneous pseudo differential operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 9.2 (1982): 211-253. <http://eudml.org/doc/83880>.

@article{Rodino1982,
author = {Rodino, Luigi},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {wave front set; local solvability; micro-hypoellipticity; Fourier integral operator},
language = {eng},
number = {2},
pages = {211-253},
publisher = {Scuola normale superiore},
title = {Microlocal analysis for spatially inhomogeneous pseudo differential operators},
url = {http://eudml.org/doc/83880},
volume = {9},
year = {1982},
}

TY - JOUR
AU - Rodino, Luigi
TI - Microlocal analysis for spatially inhomogeneous pseudo differential operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1982
PB - Scuola normale superiore
VL - 9
IS - 2
SP - 211
EP - 253
LA - eng
KW - wave front set; local solvability; micro-hypoellipticity; Fourier integral operator
UR - http://eudml.org/doc/83880
ER -

References

top
  1. [1] R. Beals, Spatially inhomogeneous pseudodifferential operators, II, Comm. Pure Appl. Math., 27 (1974), pp. 161-205. Zbl0283.35071MR467397
  2. [2] R. Beals, A. general calculus of pseudodifferential operators, Duke Math. J., 42 (1975), pp. 1-42. Zbl0343.35078MR367730
  3. [3] R. Beals, Characterization of pseudodifferential operators and applications, Duke Math. J., 44 (1977), pp. 45-57. Zbl0353.35088MR435933
  4. [4] R. Beals, Lp and Hölder estimates for pseudodifferential operators : sufficient conditions, Ann. Inst. Fourier (Grenoble), 29 (1979), pp. 239-260. Zbl0387.35065MR552967
  5. [5] R. Beals - C. Fefferman, Spatially inhomogeneous pseudodifferential operators, I, Comm. Pure Appl. Math., 27 (1974), pp. 1-24. Zbl0279.35071MR352747
  6. [6] V.V. Grushin - N.A. Sananin, Some theorems on the singularities of solutions of differential equations with weighted principal symbol, Mat. Sb., 103 (1977), pp. 37-51; Math. USSR Sb., 32 (1977), pp. 32-44. Zbl0386.35012MR442450
  7. [7] L. Hörmander, Fourier integral operators, I, Acta Math., 121 (1971), pp. 79-183. Zbl0212.46601MR388463
  8. [8] L. Hörmander, On the existence and the regularity of solutions of linear pseudodifferential equations, Enseignement Math., 17 (1971), pp. 99-163. Zbl0224.35084MR331124
  9. [9] L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math., 32 (1979), pp. 359-443. Zbl0388.47032MR517939
  10. [10] R. Lascar, Propagation des singularites des solutions d'equations pseudo-différentielles quasi-homogènes, Ann. Inst. Fourier (Grenoble), 27 (1977), pp. 79-123. Zbl0349.35079MR461592
  11. [11] A. Nagel - E.M. Stein, A new class of pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A., 75 (1978), pp. 582-585. Zbl0376.35053MR487603
  12. [12] A. Nagel - E.M. Stein, Lectures on pseudo-differential operators, Princeton University Press (1979), Princeton. Zbl0415.47025MR549321
  13. [13] C. Parenti - L. Rodino, A pseudo differential operator which shifts the wave front set, Proc. Amer. Math. Soc., 72 (1978), pp. 251-257. Zbl0377.35064MR507317
  14. [14] C. Parenti - L. Rodino, On general pseudodifferential operators, Comm. Partial Diff. Equat., 5 (1980), pp. 561-594. Zbl0433.35075MR578046
  15. [15] C. Parenti - L. Rodino, Examples of hypoelliptic operators which are not micro-hypoelliptic, Boll. Un. Mat. Ital., 17-B (1980), pp. 390-409. Zbl0407.35074MR572609
  16. [16] C. Parenti - L. Rodino, Parametrices for a class of pseudo differential operators, I, II, Ann. Mat. Pura Appl., 125 (1980), pp. 221-278. Zbl0406.35066MR605210
  17. [17] C. Parenti - F. Segala, Propagation and reflection of singularitie8 for a class of evolution equations, Comm. Partial Diff. Equat., 6 (1981). Zbl0496.35082MR623644
  18. [18] F. Trèves, Introduction to pseudodifferential and Fourier integral operators, voll. 1, 2, Plenum Publishing Corporation (1980), New York. Zbl0453.47027MR597144

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.