Analytic functionals and Bergman spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1982)
- Volume: 9, Issue: 3, page 365-404
- ISSN: 0391-173X
Access Full Article
topHow to cite
topZorn, Paul. "Analytic functionals and Bergman spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 9.3 (1982): 365-404. <http://eudml.org/doc/83885>.
@article{Zorn1982,
author = {Zorn, Paul},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {analytic functional on space of holomorphic functions; Bergman space; strictly pseudoconvex domain; real-analytic boundary},
language = {eng},
number = {3},
pages = {365-404},
publisher = {Scuola normale superiore},
title = {Analytic functionals and Bergman spaces},
url = {http://eudml.org/doc/83885},
volume = {9},
year = {1982},
}
TY - JOUR
AU - Zorn, Paul
TI - Analytic functionals and Bergman spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1982
PB - Scuola normale superiore
VL - 9
IS - 3
SP - 365
EP - 404
LA - eng
KW - analytic functional on space of holomorphic functions; Bergman space; strictly pseudoconvex domain; real-analytic boundary
UR - http://eudml.org/doc/83885
ER -
References
top- [1] S.S. Abhyankar, Local Analytic Geometry, Academic Press, New York, 1964. Zbl0205.50401MR175897
- [2] L.A. Aizenberg, The general form of a linear continuous functional in spaces of functions that are holomorphic in convex domains of CN, Soviet Math., 7 (1966), pp. 198-201. Zbl0156.15002
- [3] S.R. Bell, A representation theorem in strictly pseudo convex domains, to appear. Zbl0475.32004
- [4] S.R. Bell, Biholomorphic mappings and the ∂-Problem, Ann. Math., 114 (1981), pp. 103-113. Zbl0423.32009
- [5] S.R. Bell, Nonvanishing of the Bergman kernel function at boundary points of certain domains in CN, Math. Ann., 244 (1979), pp. 69-74. Zbl0398.32014MR550063
- [6] S. Bergman, The Kernel Function and Conformal Mapping, 2nd ed., Amer. Math. Soc., Providence, 1970. Zbl0208.34302MR507701
- [7] M. Derridj - D. Tartakoff, On global real-analyticity of solutions to the ∂-Neumann problem, Comm. Partial Diff. Equat., 1 (1976), pp. 401-435. Zbl0441.35049
- [8] R.E. Edwards, Functional Analysis, Holt, Rinehart, and Winston, New York, 1965. Zbl0182.16101MR221256
- [9] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26 (1974), pp. 1-65. Zbl0289.32012MR350069
- [10] G.B. Folland - J.J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Princeton University Press, Princeton, 1972. Zbl0247.35093MR461588
- [11] B.A. Fuks, Special Chapters in the Theory of Analytic Functions of Several Complex Variables, Amer. Math. Soc., Providence, Rhode Island, 1965. Zbl0146.30802MR188477
- [12] I.M. Gelfand - G.E. Shilov, Generalized Functions, vol. II, Academic Press, New York, 1968. Zbl0159.18301MR230128
- [13] G.M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, 1969. Zbl0183.07502MR247039
- [14] P. Griffiths - J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, New York, 1978. Zbl0408.14001MR507725
- [15] A. Grothendieck, Sur certains espaces de fonctions holomorphes, J. Reine Angew. Math., 192 (1953), pp. 35-64. Zbl0051.08704MR58865
- [16] G.M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains, and some applications, Math. USSR-Sb., 7 (1969), pp. 597-616. Zbl0208.35102
- [17] G.M. Henkin - E.M. Čirka, Boundary properties of holomorphic functions of several complex variables, J. Soviet Math., 5 (1976), pp. 612-687. Zbl0375.32005MR477155
- [18] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, 1966. Zbl0138.06203MR203075
- [19] N Kerzman, Differentiability at the boundary of the Bergman kernel function, Math. Ann., 195 (1972), pp. 149-158. MR294694
- [20] N. Kerzman, Hölder and Lp estimates for solutions of ∂u = f in strongly pseudo- convex domains, Comm. Pure Appl. Math., 24 (1971), pp. 301-380. Zbl0205.38702
- [21] C.O. Kiselman, On unique supports of analytic functionals, Ark. Mat., 6 (1965), pp. 307-318. Zbl0158.14002MR210939
- [22] J.J. Kohn, Harmonic integrals on strictly pseudoconvex manifolds, I, Ann. of Math., 781 (1963), pp. 112-148. Zbl0161.09302MR153030
- [23] G. Komatsu, Global analytic-hypoellipticity of the ∂-Neumann problem, Tôhoku Math. J., 28 (1976), pp. 145-156. Zbl0319.35056
- [24] G. Köthe, Über zwei Sätze von Banach, Math. Z., 53 (1950), pp. 203-209. Zbl0038.06701MR38551
- [25] P. Lelong, Fonctionnelles analytiques et fonctions entières (n variables), les Presses de l'Université de Montréal, Montréal, 1968. Zbl0194.38801MR466606
- [26] A. Martineau, Sur la topologie des espaces de fonctions holomorphes, Math. Ann., 163 (1966), pp. 62-88. Zbl0138.38101MR190697
- [27] A. Martineau, Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, J. Analyse Math., 11 (1963), pp. 1-64. Zbl0124.31804MR159220
- [28] L. Nirfnbfrg - S. Webster - P. Yang, Local boundary regularity of holomorphic mappings, Comm. Pure Appl. Math., 33 (1980), pp. 305-338. Zbl0436.32018MR562738
- [29] S.I. Pin, On the analytic continuation of holomorphic mappings, Math. USSR-Sb., 27 (1975), pp. 375-392. Zbl0366.32010MR393562
- [30] R. Sulanke - P. Wintgen, Differentialgeometrie und Faserbündel, Birkhäuser verlag, Basel, 1972. Zbl0271.53035MR413153
- [31] D.S. Tartakoff, The local real analyticity of solutions to □ b and the ∂-Neumann problem, Acta Math., 145 (1980), pp. 177-204. Zbl0456.35019
- [32] G. Tomassini, Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d'una varietà complessa, Ann. Scuola Norm. Sup. Pisa, 20 (1966), pp. 31-43. Zbl0154.33501MR206992
- [33] F. Treves, Analytic hypoellipticity of a class of pseudodifferential operators with double characteristics and applications to the ∂-Neumann problem, Comm. Partial Diff. Equat., 3 (1978), pp. 475-642. Zbl0384.35055
- [34] S.E. Warschawski, On differentiability at the boundary of conformal mappings, Proc. Amer. Math. Soc., 12 (1961), pp. 614-620. Zbl0100.28803MR131524
- [35] K. Yosida, Functional Analysis, 4th ed., Springer-Verlag, New York, 1974. Zbl0286.46002MR350358
- [36] S.V. Znamenskii, A geometric criterion for strong linear convexity, Functional Anal. Appl., 13 (1979), pp. 224-225. Zbl0435.32013MR545375
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.