Analytic functionals and Bergman spaces

Paul Zorn

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1982)

  • Volume: 9, Issue: 3, page 365-404
  • ISSN: 0391-173X

How to cite

top

Zorn, Paul. "Analytic functionals and Bergman spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 9.3 (1982): 365-404. <http://eudml.org/doc/83885>.

@article{Zorn1982,
author = {Zorn, Paul},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {analytic functional on space of holomorphic functions; Bergman space; strictly pseudoconvex domain; real-analytic boundary},
language = {eng},
number = {3},
pages = {365-404},
publisher = {Scuola normale superiore},
title = {Analytic functionals and Bergman spaces},
url = {http://eudml.org/doc/83885},
volume = {9},
year = {1982},
}

TY - JOUR
AU - Zorn, Paul
TI - Analytic functionals and Bergman spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1982
PB - Scuola normale superiore
VL - 9
IS - 3
SP - 365
EP - 404
LA - eng
KW - analytic functional on space of holomorphic functions; Bergman space; strictly pseudoconvex domain; real-analytic boundary
UR - http://eudml.org/doc/83885
ER -

References

top
  1. [1] S.S. Abhyankar, Local Analytic Geometry, Academic Press, New York, 1964. Zbl0205.50401MR175897
  2. [2] L.A. Aizenberg, The general form of a linear continuous functional in spaces of functions that are holomorphic in convex domains of CN, Soviet Math., 7 (1966), pp. 198-201. Zbl0156.15002
  3. [3] S.R. Bell, A representation theorem in strictly pseudo convex domains, to appear. Zbl0475.32004
  4. [4] S.R. Bell, Biholomorphic mappings and the ∂-Problem, Ann. Math., 114 (1981), pp. 103-113. Zbl0423.32009
  5. [5] S.R. Bell, Nonvanishing of the Bergman kernel function at boundary points of certain domains in CN, Math. Ann., 244 (1979), pp. 69-74. Zbl0398.32014MR550063
  6. [6] S. Bergman, The Kernel Function and Conformal Mapping, 2nd ed., Amer. Math. Soc., Providence, 1970. Zbl0208.34302MR507701
  7. [7] M. Derridj - D. Tartakoff, On global real-analyticity of solutions to the ∂-Neumann problem, Comm. Partial Diff. Equat., 1 (1976), pp. 401-435. Zbl0441.35049
  8. [8] R.E. Edwards, Functional Analysis, Holt, Rinehart, and Winston, New York, 1965. Zbl0182.16101MR221256
  9. [9] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26 (1974), pp. 1-65. Zbl0289.32012MR350069
  10. [10] G.B. Folland - J.J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Princeton University Press, Princeton, 1972. Zbl0247.35093MR461588
  11. [11] B.A. Fuks, Special Chapters in the Theory of Analytic Functions of Several Complex Variables, Amer. Math. Soc., Providence, Rhode Island, 1965. Zbl0146.30802MR188477
  12. [12] I.M. Gelfand - G.E. Shilov, Generalized Functions, vol. II, Academic Press, New York, 1968. Zbl0159.18301MR230128
  13. [13] G.M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, 1969. Zbl0183.07502MR247039
  14. [14] P. Griffiths - J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, New York, 1978. Zbl0408.14001MR507725
  15. [15] A. Grothendieck, Sur certains espaces de fonctions holomorphes, J. Reine Angew. Math., 192 (1953), pp. 35-64. Zbl0051.08704MR58865
  16. [16] G.M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains, and some applications, Math. USSR-Sb., 7 (1969), pp. 597-616. Zbl0208.35102
  17. [17] G.M. Henkin - E.M. Čirka, Boundary properties of holomorphic functions of several complex variables, J. Soviet Math., 5 (1976), pp. 612-687. Zbl0375.32005MR477155
  18. [18] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, 1966. Zbl0138.06203MR203075
  19. [19] N Kerzman, Differentiability at the boundary of the Bergman kernel function, Math. Ann., 195 (1972), pp. 149-158. MR294694
  20. [20] N. Kerzman, Hölder and Lp estimates for solutions of ∂u = f in strongly pseudo- convex domains, Comm. Pure Appl. Math., 24 (1971), pp. 301-380. Zbl0205.38702
  21. [21] C.O. Kiselman, On unique supports of analytic functionals, Ark. Mat., 6 (1965), pp. 307-318. Zbl0158.14002MR210939
  22. [22] J.J. Kohn, Harmonic integrals on strictly pseudoconvex manifolds, I, Ann. of Math., 781 (1963), pp. 112-148. Zbl0161.09302MR153030
  23. [23] G. Komatsu, Global analytic-hypoellipticity of the ∂-Neumann problem, Tôhoku Math. J., 28 (1976), pp. 145-156. Zbl0319.35056
  24. [24] G. Köthe, Über zwei Sätze von Banach, Math. Z., 53 (1950), pp. 203-209. Zbl0038.06701MR38551
  25. [25] P. Lelong, Fonctionnelles analytiques et fonctions entières (n variables), les Presses de l'Université de Montréal, Montréal, 1968. Zbl0194.38801MR466606
  26. [26] A. Martineau, Sur la topologie des espaces de fonctions holomorphes, Math. Ann., 163 (1966), pp. 62-88. Zbl0138.38101MR190697
  27. [27] A. Martineau, Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, J. Analyse Math., 11 (1963), pp. 1-64. Zbl0124.31804MR159220
  28. [28] L. Nirfnbfrg - S. Webster - P. Yang, Local boundary regularity of holomorphic mappings, Comm. Pure Appl. Math., 33 (1980), pp. 305-338. Zbl0436.32018MR562738
  29. [29] S.I. Pin, On the analytic continuation of holomorphic mappings, Math. USSR-Sb., 27 (1975), pp. 375-392. Zbl0366.32010MR393562
  30. [30] R. Sulanke - P. Wintgen, Differentialgeometrie und Faserbündel, Birkhäuser verlag, Basel, 1972. Zbl0271.53035MR413153
  31. [31] D.S. Tartakoff, The local real analyticity of solutions to □ b and the ∂-Neumann problem, Acta Math., 145 (1980), pp. 177-204. Zbl0456.35019
  32. [32] G. Tomassini, Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d'una varietà complessa, Ann. Scuola Norm. Sup. Pisa, 20 (1966), pp. 31-43. Zbl0154.33501MR206992
  33. [33] F. Treves, Analytic hypoellipticity of a class of pseudodifferential operators with double characteristics and applications to the ∂-Neumann problem, Comm. Partial Diff. Equat., 3 (1978), pp. 475-642. Zbl0384.35055
  34. [34] S.E. Warschawski, On differentiability at the boundary of conformal mappings, Proc. Amer. Math. Soc., 12 (1961), pp. 614-620. Zbl0100.28803MR131524
  35. [35] K. Yosida, Functional Analysis, 4th ed., Springer-Verlag, New York, 1974. Zbl0286.46002MR350358
  36. [36] S.V. Znamenskii, A geometric criterion for strong linear convexity, Functional Anal. Appl., 13 (1979), pp. 224-225. Zbl0435.32013MR545375

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.