The boundary value Minkowski problem. The parametric case

V. I. Oliker

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1982)

  • Volume: 9, Issue: 3, page 463-490
  • ISSN: 0391-173X

How to cite

top

Oliker, V. I.. "The boundary value Minkowski problem. The parametric case." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 9.3 (1982): 463-490. <http://eudml.org/doc/83889>.

@article{Oliker1982,
author = {Oliker, V. I.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Minkowski problem; convex hypersurface; support function},
language = {eng},
number = {3},
pages = {463-490},
publisher = {Scuola normale superiore},
title = {The boundary value Minkowski problem. The parametric case},
url = {http://eudml.org/doc/83889},
volume = {9},
year = {1982},
}

TY - JOUR
AU - Oliker, V. I.
TI - The boundary value Minkowski problem. The parametric case
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1982
PB - Scuola normale superiore
VL - 9
IS - 3
SP - 463
EP - 490
LA - eng
KW - Minkowski problem; convex hypersurface; support function
UR - http://eudml.org/doc/83889
ER -

References

top
  1. [1] A.D. Aleksandrov, Convex Polyhedrons, GITTL, M.-L., 1950. 
  2. [2] H. Busemann, Convex Surfaces, Interscience, New York, 1958. Zbl0196.55101MR105155
  3. [3] E. Calabi, Improper affine hyperspheres of convex type and a generalization. of a theorem by K. Jörgens, Michigan Math. J., 5 (1958), pp. 105-126. Zbl0113.30104MR106487
  4. [4] S.Y. Cheng - S.T. Yau, On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Appl. Math., 29 (1976), pp. 499-516. Zbl0363.53030MR423267
  5. [5] S.Y. Cheng - S.T. Yau, On the regularity of the Monge-Ampére equation det (∂2u/∂xi ∂xj) = F(x, u), Comm. Pure Appl. Math., 30 (1977), pp. 41-68. Zbl0347.35019
  6. [6] H. Gluck, The generalized Minkowski problem in differential geometry in the large, Ann. of Math., 96 (1972), no. 2, pp. 245-276. Zbl0243.53046MR309021
  7. [7] H. Lewy, On differential geometry in the large, I (Minkowski problem), Trans. Amer. Math. Soc., 43 (1938), pp. 258-270. Zbl0018.17403MR1501942JFM64.0714.03
  8. [8] C. Miranda, Partial Differential Equations of Elliptic Type, Second Edition, Ergebnisse der Mathematik, Band 2, Springer, New York, 1970. Zbl0198.14101MR284700
  9. [9] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math., 6 (1953), pp. 337-394. Zbl0051.12402MR58265
  10. [10] V.I. Oliker, On the linearized Monge-Ampére equations related to the boundary value Minkowski problem and its generalizations, preprint, Conference on Monge-Ampére Equations, Florence, 1980. Zbl0511.53065MR704034
  11. [11] V.I. Oliker, On certain elliptic differential equations on a hypersphere and their geometric applications, Indiana Univ. Math. J., 28 (1979), pp. 35-51. Zbl0399.53016MR523622
  12. [12] A.V. Pogorelov, Regularity of a convex surface with given Gaussian curvature, Mat. Sb., 31 (73) (1952), pp. 88-103 (see also [13], chapter 7, § 3). Zbl0048.40501MR52807
  13. [13] A.V. Pogorelov, Extrinsic Geometry of Convex Surfaces, Translations of mathematical monographs, V. 35, Amer. Math. Soc., 1973. Zbl0311.53067MR346714
  14. [14] A.V. Pogorelov, Multidimensional Minkowski Problem, Engl. transl.: John Wiley and Sons, New York, 1978. MR478079
  15. [15] A.V. Pogorelov, An analogue of Minkowski problem for complete infinite convex hypersurfaces, DAN USSR (1980), pp. 553-556. Zbl0448.53042MR557787

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.