The boundary value Minkowski problem. The parametric case
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1982)
- Volume: 9, Issue: 3, page 463-490
- ISSN: 0391-173X
Access Full Article
topHow to cite
topOliker, V. I.. "The boundary value Minkowski problem. The parametric case." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 9.3 (1982): 463-490. <http://eudml.org/doc/83889>.
@article{Oliker1982,
author = {Oliker, V. I.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Minkowski problem; convex hypersurface; support function},
language = {eng},
number = {3},
pages = {463-490},
publisher = {Scuola normale superiore},
title = {The boundary value Minkowski problem. The parametric case},
url = {http://eudml.org/doc/83889},
volume = {9},
year = {1982},
}
TY - JOUR
AU - Oliker, V. I.
TI - The boundary value Minkowski problem. The parametric case
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1982
PB - Scuola normale superiore
VL - 9
IS - 3
SP - 463
EP - 490
LA - eng
KW - Minkowski problem; convex hypersurface; support function
UR - http://eudml.org/doc/83889
ER -
References
top- [1] A.D. Aleksandrov, Convex Polyhedrons, GITTL, M.-L., 1950.
- [2] H. Busemann, Convex Surfaces, Interscience, New York, 1958. Zbl0196.55101MR105155
- [3] E. Calabi, Improper affine hyperspheres of convex type and a generalization. of a theorem by K. Jörgens, Michigan Math. J., 5 (1958), pp. 105-126. Zbl0113.30104MR106487
- [4] S.Y. Cheng - S.T. Yau, On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Appl. Math., 29 (1976), pp. 499-516. Zbl0363.53030MR423267
- [5] S.Y. Cheng - S.T. Yau, On the regularity of the Monge-Ampére equation det (∂2u/∂xi ∂xj) = F(x, u), Comm. Pure Appl. Math., 30 (1977), pp. 41-68. Zbl0347.35019
- [6] H. Gluck, The generalized Minkowski problem in differential geometry in the large, Ann. of Math., 96 (1972), no. 2, pp. 245-276. Zbl0243.53046MR309021
- [7] H. Lewy, On differential geometry in the large, I (Minkowski problem), Trans. Amer. Math. Soc., 43 (1938), pp. 258-270. Zbl0018.17403MR1501942JFM64.0714.03
- [8] C. Miranda, Partial Differential Equations of Elliptic Type, Second Edition, Ergebnisse der Mathematik, Band 2, Springer, New York, 1970. Zbl0198.14101MR284700
- [9] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math., 6 (1953), pp. 337-394. Zbl0051.12402MR58265
- [10] V.I. Oliker, On the linearized Monge-Ampére equations related to the boundary value Minkowski problem and its generalizations, preprint, Conference on Monge-Ampére Equations, Florence, 1980. Zbl0511.53065MR704034
- [11] V.I. Oliker, On certain elliptic differential equations on a hypersphere and their geometric applications, Indiana Univ. Math. J., 28 (1979), pp. 35-51. Zbl0399.53016MR523622
- [12] A.V. Pogorelov, Regularity of a convex surface with given Gaussian curvature, Mat. Sb., 31 (73) (1952), pp. 88-103 (see also [13], chapter 7, § 3). Zbl0048.40501MR52807
- [13] A.V. Pogorelov, Extrinsic Geometry of Convex Surfaces, Translations of mathematical monographs, V. 35, Amer. Math. Soc., 1973. Zbl0311.53067MR346714
- [14] A.V. Pogorelov, Multidimensional Minkowski Problem, Engl. transl.: John Wiley and Sons, New York, 1978. MR478079
- [15] A.V. Pogorelov, An analogue of Minkowski problem for complete infinite convex hypersurfaces, DAN USSR (1980), pp. 553-556. Zbl0448.53042MR557787
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.