Bi-extensions associated to divisors on abelian varieties and theta functions

Maurizio Candilera; Valentino Cristante

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1983)

  • Volume: 10, Issue: 3, page 437-491
  • ISSN: 0391-173X

How to cite

top

Candilera, Maurizio, and Cristante, Valentino. "Bi-extensions associated to divisors on abelian varieties and theta functions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10.3 (1983): 437-491. <http://eudml.org/doc/83913>.

@article{Candilera1983,
author = {Candilera, Maurizio, Cristante, Valentino},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {algebraic theory of theta functions; characteristic p; abelian variety; Barsotti-Tate group; Tate space},
language = {eng},
number = {3},
pages = {437-491},
publisher = {Scuola normale superiore},
title = {Bi-extensions associated to divisors on abelian varieties and theta functions},
url = {http://eudml.org/doc/83913},
volume = {10},
year = {1983},
}

TY - JOUR
AU - Candilera, Maurizio
AU - Cristante, Valentino
TI - Bi-extensions associated to divisors on abelian varieties and theta functions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1983
PB - Scuola normale superiore
VL - 10
IS - 3
SP - 437
EP - 491
LA - eng
KW - algebraic theory of theta functions; characteristic p; abelian variety; Barsotti-Tate group; Tate space
UR - http://eudml.org/doc/83913
ER -

References

top
  1. [MA] I. Barsotti, Metodi analitici per varietà abeliane in caratteristica positiva, Capitoli 1, 2; Capitoli 3, 4; Capitolo 5; Capitolo 6; Capitolo 7, Ann. Scuola Norm. Sup. Pisa, 18 (1964), pp. 1-25; 19 (1965), pp. 277-330; 19 (1965), pp. 481-512; 20 (1966), pp. 101-137; 20 (1966), pp. 331-365. 
  2. [1] I. Barsotti, Considerazioni sulle funzioni theta, Symp. Math., 3 (1970), pp. 247-277. Zbl0194.52201MR302655
  3. [2] I. Barsotti, Theta functions in positive characteristic, Astérisque, 63 (1979), pp. 5-16. Zbl0423.14026MR563457
  4. [3] L. Breen, Fonctions theta et théorème du cube, Lectures Notes in Mathematics, 980 (1983), Berlin, Heidelberg, New York, Tokyo. Zbl0558.14029MR823233
  5. [4] M. Candilera, Funzione theta in caratteristica positiva, Tesi di Laurea, Università di Padova (1979-80). 
  6. [5] V. Cristante, Classi differenziali e forma di Riemann, Ann. Scuola Norm. Sup. Pisa, IV (1977), pp. 1-12. Zbl0344.14010MR476766
  7. [6] V. Cristante, Theta functions and Barsotti-Tate groups, Ann. Scuola Norm. Sup. Pisa, VII (1980), pp. 181-215. Zbl0438.14027MR581141
  8. [7] G. Gerotto, Alcuni elementi di teoria degli ipercorpi, Ann. Mat. Pura Appl., 115 (1976), pp. 349-379. Zbl0385.14013MR476768
  9. [8] A. Grothendieck et al., Groupes de monodromie en géométrie algébrique. (SGA 7,I), Lecture notes in Mathematics288, Springer (1972). Zbl0237.00013MR354656
  10. [9] D. Mumford, Abelian varieties, Oxford Univ. Press, London (1974). Zbl0326.14012MR282985
  11. [10] D. Mumford, Bi-extensions of formal groups, in Algebraic geometry, Tata Inst. F. R. Stud. in Math. n. 4, Oxford Univ. Press (1969), pp. 307-322. Zbl0216.33101MR257089
  12. [11] D. Mumford, On the equations defining abelian varieties, I, II, III, Invent. Math., 1 (1966), pp. 287-354; 3 (1967), pp. 75-135; 3 (1967), pp. 215-244. Zbl0219.14024MR204427

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.